An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems
Purpose This paper aims to discuss the approximate solution of the nonlinear thin film flow problems. A new analytic approximate technique for addressing nonlinear problems, namely, the optimal homotopy asymptotic method (OHAM), is proposed and used in an application to the nonlinear thin film flow...
Gespeichert in:
Veröffentlicht in: | International journal of numerical methods for heat & fluid flow 2018-10, Vol.28 (12), p.2816-2841 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2841 |
---|---|
container_issue | 12 |
container_start_page | 2816 |
container_title | International journal of numerical methods for heat & fluid flow |
container_volume | 28 |
creator | Manafian, Jalil Teymuri sindi, Cevat |
description | Purpose
This paper aims to discuss the approximate solution of the nonlinear thin film flow problems. A new analytic approximate technique for addressing nonlinear problems, namely, the optimal homotopy asymptotic method (OHAM), is proposed and used in an application to the nonlinear thin film flow problems.
Design/methodology/approach
This approach does not depend upon any small/large parameters. This method provides a convenient way to control the convergence of approximation series and to adjust convergence regions when necessary.
Findings
The obtained solutions show that the OHAM is more effective, simpler and easier than other methods. The results reveal that the method is explicit. By applying the method to nonlinear thin film flow problems, it was found to be simpler in applicability, and more convenient to control convergence. Therefore, the method shows its validity and great potential for the solution of nonlinear problems in science and engineering.
Originality/value
The proposed method is tested upon nonlinear thin film flow equation from the literature and the results are compared with the available approximate solutions including Adomian decomposition method (ADM), homotopy perturbation method, modified homotopy perturbation method and HAM. Moreover, the exact solution is compared with the available numerical solutions. The graphical representation of the solution is given by Maple and is physically interpreted. |
doi_str_mv | 10.1108/HFF-08-2017-0300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_HFF-08-2017-0300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126800064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-74d94708dbae0eb1e086b07503ca5966d44ab7a970976bfed3190a63cf0d35373</originalsourceid><addsrcrecordid>eNptkEFLAzEUhIMoWKt3jwHP0Zdmk-weS7FWKHhRryG7ydIt2U1MUqT_3pR6ETwND2beMB9C9xQeKYX6abNeE6jJAqgkwAAu0IxKXhPBa36JZtAISjhnzTW6SWkPAFxUYoY-lxP2IQ-jdnjnR599OGKdjmPIPg8dHm3eeYN1CG6wBmeP887iyU9umKyO5Rom3A9uxL3z3zhE3zo7plt01WuX7N2vztHH-vl9tSHbt5fX1XJLOkZpJrIyTSWhNq22YFtqoRYtSA6s07wRwlSVbqVuJDRStL01jDagBet6MIwzyebo4fy3FH8dbMpq7w9xKpVqQReiLjtFVVxwdnXRpxRtr0Isi-NRUVAneqrQU0VO9NSJXok8nSN2tFE781_iD2_2A1XtcIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126800064</pqid></control><display><type>article</type><title>An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems</title><source>Emerald A-Z Current Journals</source><creator>Manafian, Jalil ; Teymuri sindi, Cevat</creator><creatorcontrib>Manafian, Jalil ; Teymuri sindi, Cevat</creatorcontrib><description>Purpose
This paper aims to discuss the approximate solution of the nonlinear thin film flow problems. A new analytic approximate technique for addressing nonlinear problems, namely, the optimal homotopy asymptotic method (OHAM), is proposed and used in an application to the nonlinear thin film flow problems.
Design/methodology/approach
This approach does not depend upon any small/large parameters. This method provides a convenient way to control the convergence of approximation series and to adjust convergence regions when necessary.
Findings
The obtained solutions show that the OHAM is more effective, simpler and easier than other methods. The results reveal that the method is explicit. By applying the method to nonlinear thin film flow problems, it was found to be simpler in applicability, and more convenient to control convergence. Therefore, the method shows its validity and great potential for the solution of nonlinear problems in science and engineering.
Originality/value
The proposed method is tested upon nonlinear thin film flow equation from the literature and the results are compared with the available approximate solutions including Adomian decomposition method (ADM), homotopy perturbation method, modified homotopy perturbation method and HAM. Moreover, the exact solution is compared with the available numerical solutions. The graphical representation of the solution is given by Maple and is physically interpreted.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/HFF-08-2017-0300</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Approximation ; Asymptotic methods ; Contact angle ; Convergence ; Engineering research ; Finite element analysis ; Flow equations ; Graphical representations ; Investigations ; Mathematical models ; Methods ; Non-Newtonian fluids ; Numerical analysis ; Partial differential equations ; Perturbation method ; Perturbation methods ; Problems ; Solutions ; Thin films ; Viscosity</subject><ispartof>International journal of numerical methods for heat & fluid flow, 2018-10, Vol.28 (12), p.2816-2841</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-74d94708dbae0eb1e086b07503ca5966d44ab7a970976bfed3190a63cf0d35373</citedby><cites>FETCH-LOGICAL-c311t-74d94708dbae0eb1e086b07503ca5966d44ab7a970976bfed3190a63cf0d35373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-08-2017-0300/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52689</link.rule.ids></links><search><creatorcontrib>Manafian, Jalil</creatorcontrib><creatorcontrib>Teymuri sindi, Cevat</creatorcontrib><title>An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems</title><title>International journal of numerical methods for heat & fluid flow</title><description>Purpose
This paper aims to discuss the approximate solution of the nonlinear thin film flow problems. A new analytic approximate technique for addressing nonlinear problems, namely, the optimal homotopy asymptotic method (OHAM), is proposed and used in an application to the nonlinear thin film flow problems.
Design/methodology/approach
This approach does not depend upon any small/large parameters. This method provides a convenient way to control the convergence of approximation series and to adjust convergence regions when necessary.
Findings
The obtained solutions show that the OHAM is more effective, simpler and easier than other methods. The results reveal that the method is explicit. By applying the method to nonlinear thin film flow problems, it was found to be simpler in applicability, and more convenient to control convergence. Therefore, the method shows its validity and great potential for the solution of nonlinear problems in science and engineering.
Originality/value
The proposed method is tested upon nonlinear thin film flow equation from the literature and the results are compared with the available approximate solutions including Adomian decomposition method (ADM), homotopy perturbation method, modified homotopy perturbation method and HAM. Moreover, the exact solution is compared with the available numerical solutions. The graphical representation of the solution is given by Maple and is physically interpreted.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Contact angle</subject><subject>Convergence</subject><subject>Engineering research</subject><subject>Finite element analysis</subject><subject>Flow equations</subject><subject>Graphical representations</subject><subject>Investigations</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Non-Newtonian fluids</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Perturbation method</subject><subject>Perturbation methods</subject><subject>Problems</subject><subject>Solutions</subject><subject>Thin films</subject><subject>Viscosity</subject><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkEFLAzEUhIMoWKt3jwHP0Zdmk-weS7FWKHhRryG7ydIt2U1MUqT_3pR6ETwND2beMB9C9xQeKYX6abNeE6jJAqgkwAAu0IxKXhPBa36JZtAISjhnzTW6SWkPAFxUYoY-lxP2IQ-jdnjnR599OGKdjmPIPg8dHm3eeYN1CG6wBmeP887iyU9umKyO5Rom3A9uxL3z3zhE3zo7plt01WuX7N2vztHH-vl9tSHbt5fX1XJLOkZpJrIyTSWhNq22YFtqoRYtSA6s07wRwlSVbqVuJDRStL01jDagBet6MIwzyebo4fy3FH8dbMpq7w9xKpVqQReiLjtFVVxwdnXRpxRtr0Isi-NRUVAneqrQU0VO9NSJXok8nSN2tFE781_iD2_2A1XtcIE</recordid><startdate>20181030</startdate><enddate>20181030</enddate><creator>Manafian, Jalil</creator><creator>Teymuri sindi, Cevat</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20181030</creationdate><title>An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems</title><author>Manafian, Jalil ; Teymuri sindi, Cevat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-74d94708dbae0eb1e086b07503ca5966d44ab7a970976bfed3190a63cf0d35373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Contact angle</topic><topic>Convergence</topic><topic>Engineering research</topic><topic>Finite element analysis</topic><topic>Flow equations</topic><topic>Graphical representations</topic><topic>Investigations</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Non-Newtonian fluids</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Perturbation method</topic><topic>Perturbation methods</topic><topic>Problems</topic><topic>Solutions</topic><topic>Thin films</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manafian, Jalil</creatorcontrib><creatorcontrib>Teymuri sindi, Cevat</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>International journal of numerical methods for heat & fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manafian, Jalil</au><au>Teymuri sindi, Cevat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems</atitle><jtitle>International journal of numerical methods for heat & fluid flow</jtitle><date>2018-10-30</date><risdate>2018</risdate><volume>28</volume><issue>12</issue><spage>2816</spage><epage>2841</epage><pages>2816-2841</pages><issn>0961-5539</issn><eissn>1758-6585</eissn><abstract>Purpose
This paper aims to discuss the approximate solution of the nonlinear thin film flow problems. A new analytic approximate technique for addressing nonlinear problems, namely, the optimal homotopy asymptotic method (OHAM), is proposed and used in an application to the nonlinear thin film flow problems.
Design/methodology/approach
This approach does not depend upon any small/large parameters. This method provides a convenient way to control the convergence of approximation series and to adjust convergence regions when necessary.
Findings
The obtained solutions show that the OHAM is more effective, simpler and easier than other methods. The results reveal that the method is explicit. By applying the method to nonlinear thin film flow problems, it was found to be simpler in applicability, and more convenient to control convergence. Therefore, the method shows its validity and great potential for the solution of nonlinear problems in science and engineering.
Originality/value
The proposed method is tested upon nonlinear thin film flow equation from the literature and the results are compared with the available approximate solutions including Adomian decomposition method (ADM), homotopy perturbation method, modified homotopy perturbation method and HAM. Moreover, the exact solution is compared with the available numerical solutions. The graphical representation of the solution is given by Maple and is physically interpreted.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/HFF-08-2017-0300</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-5539 |
ispartof | International journal of numerical methods for heat & fluid flow, 2018-10, Vol.28 (12), p.2816-2841 |
issn | 0961-5539 1758-6585 |
language | eng |
recordid | cdi_emerald_primary_10_1108_HFF-08-2017-0300 |
source | Emerald A-Z Current Journals |
subjects | Approximation Asymptotic methods Contact angle Convergence Engineering research Finite element analysis Flow equations Graphical representations Investigations Mathematical models Methods Non-Newtonian fluids Numerical analysis Partial differential equations Perturbation method Perturbation methods Problems Solutions Thin films Viscosity |
title | An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20homotopy%20asymptotic%20method%20applied%20to%20the%20nonlinear%20thin%20film%20flow%20problems&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Manafian,%20Jalil&rft.date=2018-10-30&rft.volume=28&rft.issue=12&rft.spage=2816&rft.epage=2841&rft.pages=2816-2841&rft.issn=0961-5539&rft.eissn=1758-6585&rft_id=info:doi/10.1108/HFF-08-2017-0300&rft_dat=%3Cproquest_emera%3E2126800064%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126800064&rft_id=info:pmid/&rfr_iscdi=true |