Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions

Purpose A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical methods for heat & fluid flow 2021-08, Vol.31 (8), p.2754-2788
Hauptverfasser: Xing, Z.B., Han, Xingchao, Ke, Hanbing, Zhang, Q.G., Zhang, Zhiping, Xu, Huijin, Wang, Fuqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2788
container_issue 8
container_start_page 2754
container_title International journal of numerical methods for heat & fluid flow
container_volume 31
creator Xing, Z.B.
Han, Xingchao
Ke, Hanbing
Zhang, Q.G.
Zhang, Zhiping
Xu, Huijin
Wang, Fuqiang
description Purpose A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods. Design/methodology/approach Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established. Findings Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model. Originality/value This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.
doi_str_mv 10.1108/HFF-07-2020-0481
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_HFF-07-2020-0481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655509951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-10b80b4da6a11582eb09120edc165a41bc597657c9b60295779a07347d122dd23</originalsourceid><addsrcrecordid>eNptUT1PwzAQjRBIlMLOaIkFhtCzEyfxSCtKkYpYYLYcx1FdJXawnSLY-OckCgNITHe6ex-6d1F0ieEWYygWm_U6hjwmQCCGtMBH0QxYhmNKE3b8qz-NzrzfAwDN0mwWfT31TdBxtxNeoUaEoKVCS9uEz1YYg663yxvkddsPK20Nqq1D0pqDkkEfFApOGN9ZF5CtkRHG1k2vK4-0QcPU9h754HoZeqc8etdhhyYjbYJyQo6S_jw6qUXj1cVPnUev6_uX1SbePj88ru62sUwwDjGGsoAyrUQmMKYFUSUwTEBVEmdUpLiUlOUZzSUrMyCM5jkTkCdpXmFCqook8-hq0u2cfeuVD3xve2cGS04ySikwRvGAggklnfXeqZp3TrfCfXAMfAyaD0FzyPkYNB-DHiiLiaLa4aim-o_x5zXJN1FwgFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655509951</pqid></control><display><type>article</type><title>Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions</title><source>Emerald A-Z Current Journals</source><creator>Xing, Z.B. ; Han, Xingchao ; Ke, Hanbing ; Zhang, Q.G. ; Zhang, Zhiping ; Xu, Huijin ; Wang, Fuqiang</creator><creatorcontrib>Xing, Z.B. ; Han, Xingchao ; Ke, Hanbing ; Zhang, Q.G. ; Zhang, Zhiping ; Xu, Huijin ; Wang, Fuqiang</creatorcontrib><description>Purpose A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods. Design/methodology/approach Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established. Findings Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model. Originality/value This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/HFF-07-2020-0481</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Computational fluid dynamics ; Convection ; Convective flow ; Darcy number ; Energy storage ; Equilibrium ; Fluid dynamics ; Heat conductivity ; Heat exchangers ; Heat transfer ; Hydrodynamics ; Investigations ; Metals ; Momentum ; Multiphase ; Nanofluids ; Nanoparticles ; Numerical methods ; Porous materials ; Porous media ; Structures ; Technicians ; Thermal coupling ; Thermal resistance ; Transport ; Viscosity</subject><ispartof>International journal of numerical methods for heat &amp; fluid flow, 2021-08, Vol.31 (8), p.2754-2788</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-10b80b4da6a11582eb09120edc165a41bc597657c9b60295779a07347d122dd23</citedby><cites>FETCH-LOGICAL-c311t-10b80b4da6a11582eb09120edc165a41bc597657c9b60295779a07347d122dd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-07-2020-0481/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52689</link.rule.ids></links><search><creatorcontrib>Xing, Z.B.</creatorcontrib><creatorcontrib>Han, Xingchao</creatorcontrib><creatorcontrib>Ke, Hanbing</creatorcontrib><creatorcontrib>Zhang, Q.G.</creatorcontrib><creatorcontrib>Zhang, Zhiping</creatorcontrib><creatorcontrib>Xu, Huijin</creatorcontrib><creatorcontrib>Wang, Fuqiang</creatorcontrib><title>Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions</title><title>International journal of numerical methods for heat &amp; fluid flow</title><description>Purpose A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods. Design/methodology/approach Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established. Findings Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model. Originality/value This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.</description><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Convective flow</subject><subject>Darcy number</subject><subject>Energy storage</subject><subject>Equilibrium</subject><subject>Fluid dynamics</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Hydrodynamics</subject><subject>Investigations</subject><subject>Metals</subject><subject>Momentum</subject><subject>Multiphase</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Numerical methods</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Structures</subject><subject>Technicians</subject><subject>Thermal coupling</subject><subject>Thermal resistance</subject><subject>Transport</subject><subject>Viscosity</subject><issn>0961-5539</issn><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUT1PwzAQjRBIlMLOaIkFhtCzEyfxSCtKkYpYYLYcx1FdJXawnSLY-OckCgNITHe6ex-6d1F0ieEWYygWm_U6hjwmQCCGtMBH0QxYhmNKE3b8qz-NzrzfAwDN0mwWfT31TdBxtxNeoUaEoKVCS9uEz1YYg663yxvkddsPK20Nqq1D0pqDkkEfFApOGN9ZF5CtkRHG1k2vK4-0QcPU9h754HoZeqc8etdhhyYjbYJyQo6S_jw6qUXj1cVPnUev6_uX1SbePj88ru62sUwwDjGGsoAyrUQmMKYFUSUwTEBVEmdUpLiUlOUZzSUrMyCM5jkTkCdpXmFCqook8-hq0u2cfeuVD3xve2cGS04ySikwRvGAggklnfXeqZp3TrfCfXAMfAyaD0FzyPkYNB-DHiiLiaLa4aim-o_x5zXJN1FwgFU</recordid><startdate>20210810</startdate><enddate>20210810</enddate><creator>Xing, Z.B.</creator><creator>Han, Xingchao</creator><creator>Ke, Hanbing</creator><creator>Zhang, Q.G.</creator><creator>Zhang, Zhiping</creator><creator>Xu, Huijin</creator><creator>Wang, Fuqiang</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20210810</creationdate><title>Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions</title><author>Xing, Z.B. ; Han, Xingchao ; Ke, Hanbing ; Zhang, Q.G. ; Zhang, Zhiping ; Xu, Huijin ; Wang, Fuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-10b80b4da6a11582eb09120edc165a41bc597657c9b60295779a07347d122dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Convective flow</topic><topic>Darcy number</topic><topic>Energy storage</topic><topic>Equilibrium</topic><topic>Fluid dynamics</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Hydrodynamics</topic><topic>Investigations</topic><topic>Metals</topic><topic>Momentum</topic><topic>Multiphase</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Numerical methods</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Structures</topic><topic>Technicians</topic><topic>Thermal coupling</topic><topic>Thermal resistance</topic><topic>Transport</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Z.B.</creatorcontrib><creatorcontrib>Han, Xingchao</creatorcontrib><creatorcontrib>Ke, Hanbing</creatorcontrib><creatorcontrib>Zhang, Q.G.</creatorcontrib><creatorcontrib>Zhang, Zhiping</creatorcontrib><creatorcontrib>Xu, Huijin</creatorcontrib><creatorcontrib>Wang, Fuqiang</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Z.B.</au><au>Han, Xingchao</au><au>Ke, Hanbing</au><au>Zhang, Q.G.</au><au>Zhang, Zhiping</au><au>Xu, Huijin</au><au>Wang, Fuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions</atitle><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle><date>2021-08-10</date><risdate>2021</risdate><volume>31</volume><issue>8</issue><spage>2754</spage><epage>2788</epage><pages>2754-2788</pages><issn>0961-5539</issn><eissn>0961-5539</eissn><eissn>1758-6585</eissn><abstract>Purpose A combination of highly conductive porous media and nanofluids is an efficient way for improving thermal performance of relevant applications. For precisely predicting the flow and thermal transport of nanofluids in porous media, the purpose of this paper is to explore the inter-phase coupling numerical methods. Design/methodology/approach Based on the lattice Boltzmann (LB) method, this study combines the convective flow, non-equilibrium thermal transport and phase interactions of nanofluids in porous matrix and proposes a new multi-phase LB model. The micro-scale momentum and heat interactions are especially analyzed for nanoparticles, base fluid and solid matrix. A set of three-phase LB equations for the flow/thermal coupling of base fluid, nanoparticles and solid matrix is established. Findings Distributions of nanoparticles, velocities for nanoparticles and the base fluid, temperatures for three phases and interaction forces are analyzed in detail. Influences of parameters on the nanofluid convection in the porous matrix are examined. Thermal resistance of nanofluid convective transport in porous structures are comprehensively discussed with the models of multi-phases. Results show that the Rayleigh number and the Darcy number have significant influences on the convective characteristics. The result with the three-phase model is mildly larger than that with the local thermal non-equilibrium model. Originality/value This paper first creates the multi-phase theoretical model for the complex coupling process of nanofluids in porous structures, which is useful for researchers and technicians in fields of thermal science and computational fluid dynamics.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/HFF-07-2020-0481</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0961-5539
ispartof International journal of numerical methods for heat & fluid flow, 2021-08, Vol.31 (8), p.2754-2788
issn 0961-5539
0961-5539
1758-6585
language eng
recordid cdi_emerald_primary_10_1108_HFF-07-2020-0481
source Emerald A-Z Current Journals
subjects Computational fluid dynamics
Convection
Convective flow
Darcy number
Energy storage
Equilibrium
Fluid dynamics
Heat conductivity
Heat exchangers
Heat transfer
Hydrodynamics
Investigations
Metals
Momentum
Multiphase
Nanofluids
Nanoparticles
Numerical methods
Porous materials
Porous media
Structures
Technicians
Thermal coupling
Thermal resistance
Transport
Viscosity
title Multi-phase lattice Boltzmann (LB) simulation for convective transport of nanofluids in porous structures with phase interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-phase%20lattice%20Boltzmann%20(LB)%20simulation%20for%20convective%20transport%20of%20nanofluids%20in%20porous%20structures%20with%20phase%20interactions&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Xing,%20Z.B.&rft.date=2021-08-10&rft.volume=31&rft.issue=8&rft.spage=2754&rft.epage=2788&rft.pages=2754-2788&rft.issn=0961-5539&rft.eissn=0961-5539&rft_id=info:doi/10.1108/HFF-07-2020-0481&rft_dat=%3Cproquest_emera%3E2655509951%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655509951&rft_id=info:pmid/&rfr_iscdi=true