A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows

Purpose – The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical methods for heat & fluid flow 2016-05, Vol.26 (3/4), p.595-623
Hauptverfasser: Bevan, Rhodri LT, Boileau, Etienne, van Loon, Raoul, Lewis, R.W, Nithiarasu, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 3/4
container_start_page 595
container_title International journal of numerical methods for heat & fluid flow
container_volume 26
creator Bevan, Rhodri LT
Boileau, Etienne
van Loon, Raoul
Lewis, R.W
Nithiarasu, P
description Purpose – The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared. Design/methodology/approach – This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split. Findings – In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations. Originality/value – A comprehensive comparison between three versions of the CBS method is provided for the first time.
doi_str_mv 10.1108/HFF-06-2015-0233
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_HFF-06-2015-0233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816078443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-191c35e0e0d880779b2ed47663cb1edf26df7a9e82d8242acab3c741470be5883</originalsourceid><addsrcrecordid>eNptkc1rFTEUxYMo-Kzduwy4cWHafEw-ZlmKzwoFN3YdMskNTcm8TJMZ9e37hzvDK4jSzb3cyzn3wP0h9IHRC8aoubzZ7wlVhFMmCeVCvEI7pqUhShr5Gu1orxiRUvRv0bvWHiilUnVqh56usC_j5Kqb00_AbV7CEZeIY3V-TuXg8rqDCY8w35eA0wGnueHHxbVE0jjl5NP8GTcY_47YHQKOS85HAr-fV7HUsW11vbDlVWgtDRlwzOVXe4_eRJcbnD_3M3S3__Lj-obcfv_67frqlnhh1ExYz7yQQIEGY6jW_cAhdFop4QcGIXIVonY9GB4M77jzbhBed6zTdABpjDhDn053p1oeF2izHVPzkLM7QFmaZYYpqk3XiVX68T_pQ1nq-o5mOWNcC70Gryp6UvlaWqsQ7VTT6OrRMmo3LHbFYqmyGxa7YVktlycLjFBdDi85_gEp_gA4fI_v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112737476</pqid></control><display><type>article</type><title>A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows</title><source>Emerald Journals</source><creator>Bevan, Rhodri LT ; Boileau, Etienne ; van Loon, Raoul ; Lewis, R.W ; Nithiarasu, P</creator><creatorcontrib>Bevan, Rhodri LT ; Boileau, Etienne ; van Loon, Raoul ; Lewis, R.W ; Nithiarasu, P</creatorcontrib><description>Purpose – The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared. Design/methodology/approach – This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split. Findings – In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations. Originality/value – A comprehensive comparison between three versions of the CBS method is provided for the first time.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/HFF-06-2015-0233</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Accuracy ; Approximation ; Assessments ; Boundary conditions ; Comparative analysis ; Comparative studies ; Compressibility ; Computational fluid dynamics ; Efficiency ; Engineering ; Finite element method ; Flow control ; Fluid flow ; Forecasting ; Incompressible flow ; Mathematical analysis ; Mathematical models ; Mechanical engineering ; Methods ; Navier-Stokes equations ; Procedures ; Reynolds number ; Stability ; Unsteady flow ; Variables ; Velocity ; Vortices</subject><ispartof>International journal of numerical methods for heat &amp; fluid flow, 2016-05, Vol.26 (3/4), p.595-623</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Emerald Group Publishing Limited 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-191c35e0e0d880779b2ed47663cb1edf26df7a9e82d8242acab3c741470be5883</citedby><cites>FETCH-LOGICAL-c386t-191c35e0e0d880779b2ed47663cb1edf26df7a9e82d8242acab3c741470be5883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-06-2015-0233/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-06-2015-0233/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Bevan, Rhodri LT</creatorcontrib><creatorcontrib>Boileau, Etienne</creatorcontrib><creatorcontrib>van Loon, Raoul</creatorcontrib><creatorcontrib>Lewis, R.W</creatorcontrib><creatorcontrib>Nithiarasu, P</creatorcontrib><title>A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows</title><title>International journal of numerical methods for heat &amp; fluid flow</title><description>Purpose – The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared. Design/methodology/approach – This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split. Findings – In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations. Originality/value – A comprehensive comparison between three versions of the CBS method is provided for the first time.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Assessments</subject><subject>Boundary conditions</subject><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Forecasting</subject><subject>Incompressible flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Methods</subject><subject>Navier-Stokes equations</subject><subject>Procedures</subject><subject>Reynolds number</subject><subject>Stability</subject><subject>Unsteady flow</subject><subject>Variables</subject><subject>Velocity</subject><subject>Vortices</subject><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkc1rFTEUxYMo-Kzduwy4cWHafEw-ZlmKzwoFN3YdMskNTcm8TJMZ9e37hzvDK4jSzb3cyzn3wP0h9IHRC8aoubzZ7wlVhFMmCeVCvEI7pqUhShr5Gu1orxiRUvRv0bvWHiilUnVqh56usC_j5Kqb00_AbV7CEZeIY3V-TuXg8rqDCY8w35eA0wGnueHHxbVE0jjl5NP8GTcY_47YHQKOS85HAr-fV7HUsW11vbDlVWgtDRlwzOVXe4_eRJcbnD_3M3S3__Lj-obcfv_67frqlnhh1ExYz7yQQIEGY6jW_cAhdFop4QcGIXIVonY9GB4M77jzbhBed6zTdABpjDhDn053p1oeF2izHVPzkLM7QFmaZYYpqk3XiVX68T_pQ1nq-o5mOWNcC70Gryp6UvlaWqsQ7VTT6OrRMmo3LHbFYqmyGxa7YVktlycLjFBdDi85_gEp_gA4fI_v</recordid><startdate>20160503</startdate><enddate>20160503</enddate><creator>Bevan, Rhodri LT</creator><creator>Boileau, Etienne</creator><creator>van Loon, Raoul</creator><creator>Lewis, R.W</creator><creator>Nithiarasu, P</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160503</creationdate><title>A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows</title><author>Bevan, Rhodri LT ; Boileau, Etienne ; van Loon, Raoul ; Lewis, R.W ; Nithiarasu, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-191c35e0e0d880779b2ed47663cb1edf26df7a9e82d8242acab3c741470be5883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Assessments</topic><topic>Boundary conditions</topic><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Forecasting</topic><topic>Incompressible flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Methods</topic><topic>Navier-Stokes equations</topic><topic>Procedures</topic><topic>Reynolds number</topic><topic>Stability</topic><topic>Unsteady flow</topic><topic>Variables</topic><topic>Velocity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevan, Rhodri LT</creatorcontrib><creatorcontrib>Boileau, Etienne</creatorcontrib><creatorcontrib>van Loon, Raoul</creatorcontrib><creatorcontrib>Lewis, R.W</creatorcontrib><creatorcontrib>Nithiarasu, P</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevan, Rhodri LT</au><au>Boileau, Etienne</au><au>van Loon, Raoul</au><au>Lewis, R.W</au><au>Nithiarasu, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows</atitle><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle><date>2016-05-03</date><risdate>2016</risdate><volume>26</volume><issue>3/4</issue><spage>595</spage><epage>623</epage><pages>595-623</pages><issn>0961-5539</issn><eissn>1758-6585</eissn><abstract>Purpose – The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared. Design/methodology/approach – This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split. Findings – In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations. Originality/value – A comprehensive comparison between three versions of the CBS method is provided for the first time.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/HFF-06-2015-0233</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-5539
ispartof International journal of numerical methods for heat & fluid flow, 2016-05, Vol.26 (3/4), p.595-623
issn 0961-5539
1758-6585
language eng
recordid cdi_emerald_primary_10_1108_HFF-06-2015-0233
source Emerald Journals
subjects Accuracy
Approximation
Assessments
Boundary conditions
Comparative analysis
Comparative studies
Compressibility
Computational fluid dynamics
Efficiency
Engineering
Finite element method
Flow control
Fluid flow
Forecasting
Incompressible flow
Mathematical analysis
Mathematical models
Mechanical engineering
Methods
Navier-Stokes equations
Procedures
Reynolds number
Stability
Unsteady flow
Variables
Velocity
Vortices
title A comparative study of fractional step method in its quasi-implicit, semi-implicit and fully-explicit forms for incompressible flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20study%20of%20fractional%20step%20method%20in%20its%20quasi-implicit,%20semi-implicit%20and%20fully-explicit%20forms%20for%20incompressible%20flows&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Bevan,%20Rhodri%20LT&rft.date=2016-05-03&rft.volume=26&rft.issue=3/4&rft.spage=595&rft.epage=623&rft.pages=595-623&rft.issn=0961-5539&rft.eissn=1758-6585&rft_id=info:doi/10.1108/HFF-06-2015-0233&rft_dat=%3Cproquest_emera%3E1816078443%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112737476&rft_id=info:pmid/&rfr_iscdi=true