Effects of magnetic field on the liquid gallium thermosyphon fluid flow; a numerical study

Purpose This paper aims to numerically study the laminar natural convection in a thermosyphon filled with liquid gallium exposed to a constant magnetic field. The left wall of the thermosyphon is at an uniformed hot temperature, whereas the right wall is at a uniform cold temperature. The top and bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical methods for heat & fluid flow 2020-02, Vol.30 (2), p.681-703
Hauptverfasser: Teimouri, Hamid, Behzadmehr, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 2
container_start_page 681
container_title International journal of numerical methods for heat & fluid flow
container_volume 30
creator Teimouri, Hamid
Behzadmehr, Amin
description Purpose This paper aims to numerically study the laminar natural convection in a thermosyphon filled with liquid gallium exposed to a constant magnetic field. The left wall of the thermosyphon is at an uniformed hot temperature, whereas the right wall is at a uniform cold temperature. The top and bottom walls are considered to be adiabatic. All walls are electrically insulated. The effects of Hartmann number, in a wide range of Rayleigh number and aspect ratio combinations, on the natural convection throughout the thermosyphon, are investigated and discussed. Furthermore, different forces that influence the natural flow structure are studied. Design/methodology/approach A Fortran code is developed based on the finite volume method to solve the two-dimensional unsteady governing equations. Findings Imposing a magnetic field improves the stability of the fluid flow and thus reduces the Nusselt number. For a given Hartmann and Rayleigh number, there is an optimum aspect ratio for which the average velocity becomes maximum. Research limitations/implications This paper is a two-dimensional investigation. Originality/value To the best of the authors’ knowledge, the effect of the magnetic field on natural convection of liquid gallium in the considered thermosyphon has not been studied numerically in detail. The results of this paper would be helpful in considering the application of the low Prandtl number’s liquid metals in thermosyphon MHD generators and certain cooling devices.
doi_str_mv 10.1108/HFF-05-2019-0431
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_HFF-05-2019-0431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339785190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8db4ca670e658b42ccb29207cc4b6b92e4fa8e08bf3dc4ca19ca77b3c7eb0ffc3</originalsourceid><addsrcrecordid>eNp9UcFKAzEQDaJgrd49BjyvnSSbbIInKa0VCl704iVks0m7JdttN7tI_94s9SKIp4F57828eYPQPYFHQkDOVstlBjyjQFQGOSMXaEIKLjPBJb9EE1CCZJwzdY1uYtwBABe5mKDPhffO9hG3Hjdms3d9bbGvXahwu8f91uFQH4e6whsTQj00Y6tr2ng6bBPuwwj50H49YYP3Q-O62pqAYz9Up1t05U2I7u6nTtHHcvE-X2Xrt5fX-fM6s4ypPpNVmVsjCnDJaplTa0uqKBTW5qUoFXW5N9KBLD2rbGISZU1RlMwWrgTvLZuih_PcQ9ceBxd7vWuHbp9WaiqozJkSFP5lJR-F5ESNLDizbNfG2DmvD13dmO6kCegxZ51y1sD1mLMec06S2Vni0vUmVH8pfn2GfQNA0374</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339785190</pqid></control><display><type>article</type><title>Effects of magnetic field on the liquid gallium thermosyphon fluid flow; a numerical study</title><source>Emerald A-Z Current Journals</source><creator>Teimouri, Hamid ; Behzadmehr, Amin</creator><creatorcontrib>Teimouri, Hamid ; Behzadmehr, Amin</creatorcontrib><description>Purpose This paper aims to numerically study the laminar natural convection in a thermosyphon filled with liquid gallium exposed to a constant magnetic field. The left wall of the thermosyphon is at an uniformed hot temperature, whereas the right wall is at a uniform cold temperature. The top and bottom walls are considered to be adiabatic. All walls are electrically insulated. The effects of Hartmann number, in a wide range of Rayleigh number and aspect ratio combinations, on the natural convection throughout the thermosyphon, are investigated and discussed. Furthermore, different forces that influence the natural flow structure are studied. Design/methodology/approach A Fortran code is developed based on the finite volume method to solve the two-dimensional unsteady governing equations. Findings Imposing a magnetic field improves the stability of the fluid flow and thus reduces the Nusselt number. For a given Hartmann and Rayleigh number, there is an optimum aspect ratio for which the average velocity becomes maximum. Research limitations/implications This paper is a two-dimensional investigation. Originality/value To the best of the authors’ knowledge, the effect of the magnetic field on natural convection of liquid gallium in the considered thermosyphon has not been studied numerically in detail. The results of this paper would be helpful in considering the application of the low Prandtl number’s liquid metals in thermosyphon MHD generators and certain cooling devices.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/HFF-05-2019-0431</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Aspect ratio ; Average velocity ; Computational fluid dynamics ; Conductivity ; Convection ; Dimensional stability ; Finite volume method ; Flow stability ; Flow structures ; Fluid dynamics ; Fluid flow ; Fluids ; Free convection ; Gallium ; Hartmann number ; Heat transfer ; Investigations ; Liquid metals ; Magnetic field ; Magnetic fields ; Magnetohydrodynamic generators ; Metals ; Natural flow ; Prandtl number ; Rayleigh number ; Researchers ; Reynolds number ; Temperature ; Thermosyphons ; Velocity ; Viscosity ; Walls</subject><ispartof>International journal of numerical methods for heat &amp; fluid flow, 2020-02, Vol.30 (2), p.681-703</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8db4ca670e658b42ccb29207cc4b6b92e4fa8e08bf3dc4ca19ca77b3c7eb0ffc3</citedby><cites>FETCH-LOGICAL-c339t-8db4ca670e658b42ccb29207cc4b6b92e4fa8e08bf3dc4ca19ca77b3c7eb0ffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/HFF-05-2019-0431/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>315,781,785,968,11637,27926,27927,52691</link.rule.ids></links><search><creatorcontrib>Teimouri, Hamid</creatorcontrib><creatorcontrib>Behzadmehr, Amin</creatorcontrib><title>Effects of magnetic field on the liquid gallium thermosyphon fluid flow; a numerical study</title><title>International journal of numerical methods for heat &amp; fluid flow</title><description>Purpose This paper aims to numerically study the laminar natural convection in a thermosyphon filled with liquid gallium exposed to a constant magnetic field. The left wall of the thermosyphon is at an uniformed hot temperature, whereas the right wall is at a uniform cold temperature. The top and bottom walls are considered to be adiabatic. All walls are electrically insulated. The effects of Hartmann number, in a wide range of Rayleigh number and aspect ratio combinations, on the natural convection throughout the thermosyphon, are investigated and discussed. Furthermore, different forces that influence the natural flow structure are studied. Design/methodology/approach A Fortran code is developed based on the finite volume method to solve the two-dimensional unsteady governing equations. Findings Imposing a magnetic field improves the stability of the fluid flow and thus reduces the Nusselt number. For a given Hartmann and Rayleigh number, there is an optimum aspect ratio for which the average velocity becomes maximum. Research limitations/implications This paper is a two-dimensional investigation. Originality/value To the best of the authors’ knowledge, the effect of the magnetic field on natural convection of liquid gallium in the considered thermosyphon has not been studied numerically in detail. The results of this paper would be helpful in considering the application of the low Prandtl number’s liquid metals in thermosyphon MHD generators and certain cooling devices.</description><subject>Aspect ratio</subject><subject>Average velocity</subject><subject>Computational fluid dynamics</subject><subject>Conductivity</subject><subject>Convection</subject><subject>Dimensional stability</subject><subject>Finite volume method</subject><subject>Flow stability</subject><subject>Flow structures</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Free convection</subject><subject>Gallium</subject><subject>Hartmann number</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Liquid metals</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic generators</subject><subject>Metals</subject><subject>Natural flow</subject><subject>Prandtl number</subject><subject>Rayleigh number</subject><subject>Researchers</subject><subject>Reynolds number</subject><subject>Temperature</subject><subject>Thermosyphons</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Walls</subject><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UcFKAzEQDaJgrd49BjyvnSSbbIInKa0VCl704iVks0m7JdttN7tI_94s9SKIp4F57828eYPQPYFHQkDOVstlBjyjQFQGOSMXaEIKLjPBJb9EE1CCZJwzdY1uYtwBABe5mKDPhffO9hG3Hjdms3d9bbGvXahwu8f91uFQH4e6whsTQj00Y6tr2ng6bBPuwwj50H49YYP3Q-O62pqAYz9Up1t05U2I7u6nTtHHcvE-X2Xrt5fX-fM6s4ypPpNVmVsjCnDJaplTa0uqKBTW5qUoFXW5N9KBLD2rbGISZU1RlMwWrgTvLZuih_PcQ9ceBxd7vWuHbp9WaiqozJkSFP5lJR-F5ESNLDizbNfG2DmvD13dmO6kCegxZ51y1sD1mLMec06S2Vni0vUmVH8pfn2GfQNA0374</recordid><startdate>20200203</startdate><enddate>20200203</enddate><creator>Teimouri, Hamid</creator><creator>Behzadmehr, Amin</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20200203</creationdate><title>Effects of magnetic field on the liquid gallium thermosyphon fluid flow; a numerical study</title><author>Teimouri, Hamid ; Behzadmehr, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8db4ca670e658b42ccb29207cc4b6b92e4fa8e08bf3dc4ca19ca77b3c7eb0ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aspect ratio</topic><topic>Average velocity</topic><topic>Computational fluid dynamics</topic><topic>Conductivity</topic><topic>Convection</topic><topic>Dimensional stability</topic><topic>Finite volume method</topic><topic>Flow stability</topic><topic>Flow structures</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Free convection</topic><topic>Gallium</topic><topic>Hartmann number</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Liquid metals</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic generators</topic><topic>Metals</topic><topic>Natural flow</topic><topic>Prandtl number</topic><topic>Rayleigh number</topic><topic>Researchers</topic><topic>Reynolds number</topic><topic>Temperature</topic><topic>Thermosyphons</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teimouri, Hamid</creatorcontrib><creatorcontrib>Behzadmehr, Amin</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teimouri, Hamid</au><au>Behzadmehr, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of magnetic field on the liquid gallium thermosyphon fluid flow; a numerical study</atitle><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle><date>2020-02-03</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>681</spage><epage>703</epage><pages>681-703</pages><issn>0961-5539</issn><eissn>1758-6585</eissn><abstract>Purpose This paper aims to numerically study the laminar natural convection in a thermosyphon filled with liquid gallium exposed to a constant magnetic field. The left wall of the thermosyphon is at an uniformed hot temperature, whereas the right wall is at a uniform cold temperature. The top and bottom walls are considered to be adiabatic. All walls are electrically insulated. The effects of Hartmann number, in a wide range of Rayleigh number and aspect ratio combinations, on the natural convection throughout the thermosyphon, are investigated and discussed. Furthermore, different forces that influence the natural flow structure are studied. Design/methodology/approach A Fortran code is developed based on the finite volume method to solve the two-dimensional unsteady governing equations. Findings Imposing a magnetic field improves the stability of the fluid flow and thus reduces the Nusselt number. For a given Hartmann and Rayleigh number, there is an optimum aspect ratio for which the average velocity becomes maximum. Research limitations/implications This paper is a two-dimensional investigation. Originality/value To the best of the authors’ knowledge, the effect of the magnetic field on natural convection of liquid gallium in the considered thermosyphon has not been studied numerically in detail. The results of this paper would be helpful in considering the application of the low Prandtl number’s liquid metals in thermosyphon MHD generators and certain cooling devices.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/HFF-05-2019-0431</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0961-5539
ispartof International journal of numerical methods for heat & fluid flow, 2020-02, Vol.30 (2), p.681-703
issn 0961-5539
1758-6585
language eng
recordid cdi_emerald_primary_10_1108_HFF-05-2019-0431
source Emerald A-Z Current Journals
subjects Aspect ratio
Average velocity
Computational fluid dynamics
Conductivity
Convection
Dimensional stability
Finite volume method
Flow stability
Flow structures
Fluid dynamics
Fluid flow
Fluids
Free convection
Gallium
Hartmann number
Heat transfer
Investigations
Liquid metals
Magnetic field
Magnetic fields
Magnetohydrodynamic generators
Metals
Natural flow
Prandtl number
Rayleigh number
Researchers
Reynolds number
Temperature
Thermosyphons
Velocity
Viscosity
Walls
title Effects of magnetic field on the liquid gallium thermosyphon fluid flow; a numerical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20magnetic%20field%20on%20the%20liquid%20gallium%20thermosyphon%20fluid%20flow;%20a%20numerical%20study&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Teimouri,%20Hamid&rft.date=2020-02-03&rft.volume=30&rft.issue=2&rft.spage=681&rft.epage=703&rft.pages=681-703&rft.issn=0961-5539&rft.eissn=1758-6585&rft_id=info:doi/10.1108/HFF-05-2019-0431&rft_dat=%3Cproquest_emera%3E2339785190%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339785190&rft_id=info:pmid/&rfr_iscdi=true