Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution
Purpose This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution. Design/methodology/approach UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (...
Gespeichert in:
Veröffentlicht in: | Anti-corrosion methods and materials 2022-08, Vol.69 (5), p.499-505 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 5 |
container_start_page | 499 |
container_title | Anti-corrosion methods and materials |
container_volume | 69 |
creator | Zhu, Jun Luo, Wei Xv, Wentao Xv, Shuigen Zhang, XinYang Zhao, Jiefang |
description | Purpose
This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution.
Design/methodology/approach
UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied.
Findings
All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance.
Social implications
Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications.
Originality/value
Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance. |
doi_str_mv | 10.1108/ACMM-05-2021-2481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_ACMM-05-2021-2481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697667952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-71ae164f3ea5d9a694fbe35cff676131adf537f88ada6ce6533f605d114f1203</originalsourceid><addsrcrecordid>eNptUctOwzAQjBBIlMIHcLPEOWDHsdMcq4pHJRCX3i3XXrcujl3sBKnfwQ_jUA4gcdoZ7cyudrYorgm-JQTP7uaLl5cSs7LCFSmrekZOignGmJaMte3pL3xeXKS0y7Sq6mZSfC69cQN4BSgYpOIhbMBbhWy3l6q3foOk1ygNSgHoI_Ug3YiCR-BA9TGoLXRWSYdUiDEkmztr2MoPG-L31CBjgnITpfVoMaD14N5QhiloO3RIbV2IVkPmbuiz-bI4M9IluPqp02L1cL9aPJXPr4_Lxfy5VKTlfdkQCYTXhoJkupW8rc0aKFPG8IYTSqQ2jDZmNpNacgWcUWo4ZpqQ2pAK02lxcxy7j-F9gNSLXRiizxtFxduG86ZlVVaRo0rly1IEI_bRdjIeBMFijF6M0QvMxBi9GKPPHnz0QAdROv2v5c-36Bf-B4iv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697667952</pqid></control><display><type>article</type><title>Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Zhu, Jun ; Luo, Wei ; Xv, Wentao ; Xv, Shuigen ; Zhang, XinYang ; Zhao, Jiefang</creator><creatorcontrib>Zhu, Jun ; Luo, Wei ; Xv, Wentao ; Xv, Shuigen ; Zhang, XinYang ; Zhao, Jiefang</creatorcontrib><description>Purpose
This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution.
Design/methodology/approach
UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied.
Findings
All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance.
Social implications
Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications.
Originality/value
Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.</description><identifier>ISSN: 0003-5599</identifier><identifier>EISSN: 0003-5599</identifier><identifier>EISSN: 1758-4221</identifier><identifier>DOI: 10.1108/ACMM-05-2021-2481</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Annealing ; Bulk density ; Chloride ; Copper ; Corrosion ; Corrosion resistance ; Corrosion tests ; Cryogenic effects ; Dislocation density ; Electrochemical corrosion ; Electrochemistry ; Grain boundaries ; Grain refinement ; Grain size ; Heat treatment ; Mechanical properties ; Microstructure ; Particle size ; Sodium ; Sodium chloride ; Temperature ; Ultrafines</subject><ispartof>Anti-corrosion methods and materials, 2022-08, Vol.69 (5), p.499-505</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-71ae164f3ea5d9a694fbe35cff676131adf537f88ada6ce6533f605d114f1203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/ACMM-05-2021-2481/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,21675,27903,27904,53222</link.rule.ids></links><search><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Xv, Wentao</creatorcontrib><creatorcontrib>Xv, Shuigen</creatorcontrib><creatorcontrib>Zhang, XinYang</creatorcontrib><creatorcontrib>Zhao, Jiefang</creatorcontrib><title>Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution</title><title>Anti-corrosion methods and materials</title><description>Purpose
This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution.
Design/methodology/approach
UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied.
Findings
All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance.
Social implications
Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications.
Originality/value
Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.</description><subject>Annealing</subject><subject>Bulk density</subject><subject>Chloride</subject><subject>Copper</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Cryogenic effects</subject><subject>Dislocation density</subject><subject>Electrochemical corrosion</subject><subject>Electrochemistry</subject><subject>Grain boundaries</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Heat treatment</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Temperature</subject><subject>Ultrafines</subject><issn>0003-5599</issn><issn>0003-5599</issn><issn>1758-4221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUctOwzAQjBBIlMIHcLPEOWDHsdMcq4pHJRCX3i3XXrcujl3sBKnfwQ_jUA4gcdoZ7cyudrYorgm-JQTP7uaLl5cSs7LCFSmrekZOignGmJaMte3pL3xeXKS0y7Sq6mZSfC69cQN4BSgYpOIhbMBbhWy3l6q3foOk1ygNSgHoI_Ug3YiCR-BA9TGoLXRWSYdUiDEkmztr2MoPG-L31CBjgnITpfVoMaD14N5QhiloO3RIbV2IVkPmbuiz-bI4M9IluPqp02L1cL9aPJXPr4_Lxfy5VKTlfdkQCYTXhoJkupW8rc0aKFPG8IYTSqQ2jDZmNpNacgWcUWo4ZpqQ2pAK02lxcxy7j-F9gNSLXRiizxtFxduG86ZlVVaRo0rly1IEI_bRdjIeBMFijF6M0QvMxBi9GKPPHnz0QAdROv2v5c-36Bf-B4iv</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Zhu, Jun</creator><creator>Luo, Wei</creator><creator>Xv, Wentao</creator><creator>Xv, Shuigen</creator><creator>Zhang, XinYang</creator><creator>Zhao, Jiefang</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0F</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220804</creationdate><title>Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution</title><author>Zhu, Jun ; Luo, Wei ; Xv, Wentao ; Xv, Shuigen ; Zhang, XinYang ; Zhao, Jiefang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-71ae164f3ea5d9a694fbe35cff676131adf537f88ada6ce6533f605d114f1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annealing</topic><topic>Bulk density</topic><topic>Chloride</topic><topic>Copper</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Cryogenic effects</topic><topic>Dislocation density</topic><topic>Electrochemical corrosion</topic><topic>Electrochemistry</topic><topic>Grain boundaries</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Heat treatment</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Temperature</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Xv, Wentao</creatorcontrib><creatorcontrib>Xv, Shuigen</creatorcontrib><creatorcontrib>Zhang, XinYang</creatorcontrib><creatorcontrib>Zhao, Jiefang</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Anti-corrosion methods and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jun</au><au>Luo, Wei</au><au>Xv, Wentao</au><au>Xv, Shuigen</au><au>Zhang, XinYang</au><au>Zhao, Jiefang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution</atitle><jtitle>Anti-corrosion methods and materials</jtitle><date>2022-08-04</date><risdate>2022</risdate><volume>69</volume><issue>5</issue><spage>499</spage><epage>505</epage><pages>499-505</pages><issn>0003-5599</issn><eissn>0003-5599</eissn><eissn>1758-4221</eissn><abstract>Purpose
This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution.
Design/methodology/approach
UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied.
Findings
All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance.
Social implications
Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications.
Originality/value
Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/ACMM-05-2021-2481</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-5599 |
ispartof | Anti-corrosion methods and materials, 2022-08, Vol.69 (5), p.499-505 |
issn | 0003-5599 0003-5599 1758-4221 |
language | eng |
recordid | cdi_emerald_primary_10_1108_ACMM-05-2021-2481 |
source | Standard: Emerald eJournal Premier Collection |
subjects | Annealing Bulk density Chloride Copper Corrosion Corrosion resistance Corrosion tests Cryogenic effects Dislocation density Electrochemical corrosion Electrochemistry Grain boundaries Grain refinement Grain size Heat treatment Mechanical properties Microstructure Particle size Sodium Sodium chloride Temperature Ultrafines |
title | Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20cryogenic%20impacting%20and%20succeeding%20annealing%20on%20electrochemical%20corrosion%20behavior%20of%20coarse-grain%20Cu%20bulk%20in%20sodium%20chloride%20solution&rft.jtitle=Anti-corrosion%20methods%20and%20materials&rft.au=Zhu,%20Jun&rft.date=2022-08-04&rft.volume=69&rft.issue=5&rft.spage=499&rft.epage=505&rft.pages=499-505&rft.issn=0003-5599&rft.eissn=0003-5599&rft_id=info:doi/10.1108/ACMM-05-2021-2481&rft_dat=%3Cproquest_emera%3E2697667952%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697667952&rft_id=info:pmid/&rfr_iscdi=true |