Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution

Purpose This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution. Design/methodology/approach UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anti-corrosion methods and materials 2022-08, Vol.69 (5), p.499-505
Hauptverfasser: Zhu, Jun, Luo, Wei, Xv, Wentao, Xv, Shuigen, Zhang, XinYang, Zhao, Jiefang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 5
container_start_page 499
container_title Anti-corrosion methods and materials
container_volume 69
creator Zhu, Jun
Luo, Wei
Xv, Wentao
Xv, Shuigen
Zhang, XinYang
Zhao, Jiefang
description Purpose This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution. Design/methodology/approach UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied. Findings All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance. Social implications Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications. Originality/value Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.
doi_str_mv 10.1108/ACMM-05-2021-2481
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_ACMM-05-2021-2481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697667952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-71ae164f3ea5d9a694fbe35cff676131adf537f88ada6ce6533f605d114f1203</originalsourceid><addsrcrecordid>eNptUctOwzAQjBBIlMIHcLPEOWDHsdMcq4pHJRCX3i3XXrcujl3sBKnfwQ_jUA4gcdoZ7cyudrYorgm-JQTP7uaLl5cSs7LCFSmrekZOignGmJaMte3pL3xeXKS0y7Sq6mZSfC69cQN4BSgYpOIhbMBbhWy3l6q3foOk1ygNSgHoI_Ug3YiCR-BA9TGoLXRWSYdUiDEkmztr2MoPG-L31CBjgnITpfVoMaD14N5QhiloO3RIbV2IVkPmbuiz-bI4M9IluPqp02L1cL9aPJXPr4_Lxfy5VKTlfdkQCYTXhoJkupW8rc0aKFPG8IYTSqQ2jDZmNpNacgWcUWo4ZpqQ2pAK02lxcxy7j-F9gNSLXRiizxtFxduG86ZlVVaRo0rly1IEI_bRdjIeBMFijF6M0QvMxBi9GKPPHnz0QAdROv2v5c-36Bf-B4iv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697667952</pqid></control><display><type>article</type><title>Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Zhu, Jun ; Luo, Wei ; Xv, Wentao ; Xv, Shuigen ; Zhang, XinYang ; Zhao, Jiefang</creator><creatorcontrib>Zhu, Jun ; Luo, Wei ; Xv, Wentao ; Xv, Shuigen ; Zhang, XinYang ; Zhao, Jiefang</creatorcontrib><description>Purpose This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution. Design/methodology/approach UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied. Findings All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance. Social implications Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications. Originality/value Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.</description><identifier>ISSN: 0003-5599</identifier><identifier>EISSN: 0003-5599</identifier><identifier>EISSN: 1758-4221</identifier><identifier>DOI: 10.1108/ACMM-05-2021-2481</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Annealing ; Bulk density ; Chloride ; Copper ; Corrosion ; Corrosion resistance ; Corrosion tests ; Cryogenic effects ; Dislocation density ; Electrochemical corrosion ; Electrochemistry ; Grain boundaries ; Grain refinement ; Grain size ; Heat treatment ; Mechanical properties ; Microstructure ; Particle size ; Sodium ; Sodium chloride ; Temperature ; Ultrafines</subject><ispartof>Anti-corrosion methods and materials, 2022-08, Vol.69 (5), p.499-505</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-71ae164f3ea5d9a694fbe35cff676131adf537f88ada6ce6533f605d114f1203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/ACMM-05-2021-2481/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,21675,27903,27904,53222</link.rule.ids></links><search><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Xv, Wentao</creatorcontrib><creatorcontrib>Xv, Shuigen</creatorcontrib><creatorcontrib>Zhang, XinYang</creatorcontrib><creatorcontrib>Zhao, Jiefang</creatorcontrib><title>Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution</title><title>Anti-corrosion methods and materials</title><description>Purpose This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution. Design/methodology/approach UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied. Findings All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance. Social implications Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications. Originality/value Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.</description><subject>Annealing</subject><subject>Bulk density</subject><subject>Chloride</subject><subject>Copper</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Cryogenic effects</subject><subject>Dislocation density</subject><subject>Electrochemical corrosion</subject><subject>Electrochemistry</subject><subject>Grain boundaries</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Heat treatment</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Temperature</subject><subject>Ultrafines</subject><issn>0003-5599</issn><issn>0003-5599</issn><issn>1758-4221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUctOwzAQjBBIlMIHcLPEOWDHsdMcq4pHJRCX3i3XXrcujl3sBKnfwQ_jUA4gcdoZ7cyudrYorgm-JQTP7uaLl5cSs7LCFSmrekZOignGmJaMte3pL3xeXKS0y7Sq6mZSfC69cQN4BSgYpOIhbMBbhWy3l6q3foOk1ygNSgHoI_Ug3YiCR-BA9TGoLXRWSYdUiDEkmztr2MoPG-L31CBjgnITpfVoMaD14N5QhiloO3RIbV2IVkPmbuiz-bI4M9IluPqp02L1cL9aPJXPr4_Lxfy5VKTlfdkQCYTXhoJkupW8rc0aKFPG8IYTSqQ2jDZmNpNacgWcUWo4ZpqQ2pAK02lxcxy7j-F9gNSLXRiizxtFxduG86ZlVVaRo0rly1IEI_bRdjIeBMFijF6M0QvMxBi9GKPPHnz0QAdROv2v5c-36Bf-B4iv</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Zhu, Jun</creator><creator>Luo, Wei</creator><creator>Xv, Wentao</creator><creator>Xv, Shuigen</creator><creator>Zhang, XinYang</creator><creator>Zhao, Jiefang</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0F</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220804</creationdate><title>Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution</title><author>Zhu, Jun ; Luo, Wei ; Xv, Wentao ; Xv, Shuigen ; Zhang, XinYang ; Zhao, Jiefang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-71ae164f3ea5d9a694fbe35cff676131adf537f88ada6ce6533f605d114f1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annealing</topic><topic>Bulk density</topic><topic>Chloride</topic><topic>Copper</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Cryogenic effects</topic><topic>Dislocation density</topic><topic>Electrochemical corrosion</topic><topic>Electrochemistry</topic><topic>Grain boundaries</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Heat treatment</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Temperature</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Xv, Wentao</creatorcontrib><creatorcontrib>Xv, Shuigen</creatorcontrib><creatorcontrib>Zhang, XinYang</creatorcontrib><creatorcontrib>Zhao, Jiefang</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Anti-corrosion methods and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jun</au><au>Luo, Wei</au><au>Xv, Wentao</au><au>Xv, Shuigen</au><au>Zhang, XinYang</au><au>Zhao, Jiefang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution</atitle><jtitle>Anti-corrosion methods and materials</jtitle><date>2022-08-04</date><risdate>2022</risdate><volume>69</volume><issue>5</issue><spage>499</spage><epage>505</epage><pages>499-505</pages><issn>0003-5599</issn><eissn>0003-5599</eissn><eissn>1758-4221</eissn><abstract>Purpose This paper aims to study the electrochemical corrosion performance of ultrafine-grained (UFG) Cu bulk in 0.5 M NaCl solution. Design/methodology/approach UFG Cu bulk were prepared by impacting at −196°C and following heat treatment. The electrochemical corrosion behaviors of coarse-grained (CG), impacted and subsequently annealed at 190°C Cu bulks were studied. Findings All the bulks displayed typical active-passive-transpassive behaviors (dual passive films without stable passive regions). The resistance to corrosion of impacted Cu bulk was notably superior to that of CG Cu bulk, and subsequently annealing further improved its corrosion resistance. Social implications Except for mechanical properties, corrosion performance has been considered to be one of the most important aspects in bulk UFG metallic materials research for the prospective engineering applications. Originality/value Cryogenic impacting could effectively reduce grain size of CG Cu bulk to UFG scale and induce high density dislocation. Subsequent annealing resulted in a further decrease of grain size even to nanoscale, as well as nanometer twins. The grain refinement, high density dislocation and annealing twins effectively enhance the passivation capability, resulting in an increase in the corrosion resistance.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/ACMM-05-2021-2481</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-5599
ispartof Anti-corrosion methods and materials, 2022-08, Vol.69 (5), p.499-505
issn 0003-5599
0003-5599
1758-4221
language eng
recordid cdi_emerald_primary_10_1108_ACMM-05-2021-2481
source Standard: Emerald eJournal Premier Collection
subjects Annealing
Bulk density
Chloride
Copper
Corrosion
Corrosion resistance
Corrosion tests
Cryogenic effects
Dislocation density
Electrochemical corrosion
Electrochemistry
Grain boundaries
Grain refinement
Grain size
Heat treatment
Mechanical properties
Microstructure
Particle size
Sodium
Sodium chloride
Temperature
Ultrafines
title Influence of cryogenic impacting and succeeding annealing on electrochemical corrosion behavior of coarse-grain Cu bulk in sodium chloride solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20cryogenic%20impacting%20and%20succeeding%20annealing%20on%20electrochemical%20corrosion%20behavior%20of%20coarse-grain%20Cu%20bulk%20in%20sodium%20chloride%20solution&rft.jtitle=Anti-corrosion%20methods%20and%20materials&rft.au=Zhu,%20Jun&rft.date=2022-08-04&rft.volume=69&rft.issue=5&rft.spage=499&rft.epage=505&rft.pages=499-505&rft.issn=0003-5599&rft.eissn=0003-5599&rft_id=info:doi/10.1108/ACMM-05-2021-2481&rft_dat=%3Cproquest_emera%3E2697667952%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697667952&rft_id=info:pmid/&rfr_iscdi=true