Three-stage supply chain allocation with fixed cost
Purpose - The purpose of this paper is of two-fold. First, the authors propose the application of genetic algorithm (GA)-based heuristic for solving a distribution allocation problem for a three-stage supply chain with fixed cost. Second, a methodology for parameter design in GA is discussed which c...
Gespeichert in:
Veröffentlicht in: | Journal of manufacturing technology management 2012-01, Vol.23 (7), p.853-868 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 868 |
---|---|
container_issue | 7 |
container_start_page | 853 |
container_title | Journal of manufacturing technology management |
container_volume | 23 |
creator | Panicker, Vinay V Sridharan, R Ebenezer, B |
description | Purpose - The purpose of this paper is of two-fold. First, the authors propose the application of genetic algorithm (GA)-based heuristic for solving a distribution allocation problem for a three-stage supply chain with fixed cost. Second, a methodology for parameter design in GA is discussed which can lead to better performance of the algorithm.Design methodology approach - A mathematical model is formulated as an integer-programming problem. The model is solved using GA-based heuristic and illustrated with a numerical example. An investigation is made for determining the best combination of the parameters of GA using factorial design procedure.Findings - The optimum population size for the selected problem size is found to be 100. The mutation probability for a better solution is 0.30. The objective function value at the above mentioned levels is better than that obtained at the other combinations.Research limitations implications - This work provides a good insight about the fixed cost transportation problem (FCTP) in a three-stage supply chain and design of numerical parameters for GA. The model developed assumes a single product environment in a single period. Hence, the present study can be extended to a multi-product, multi-period, and varying demand environment. In the parameter design, three distinct numerical parameters are considered. The parameters, population size and mutation probability are set at four levels and the parameter, crossover probability is set at three levels. More levels can be selected so that more combinations can be experimented.Originality value - The paper presents the formulation and solution of a distribution-allocation problem in a three-stage supply chain with fixed cost for a transportation route. |
doi_str_mv | 10.1108/17410381211267691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_17410381211267691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792987341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-741bce06c91e338f05f8b020d3da137e86c8e216e77dbf155452413d225066db3</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6rP8BbwYsHq5mkTdKjLH7BgpcVvIU0mbpdum1NWnT_vVlWEFb2NHN43plhCLkEegtA1R3IDChXwACYkKKAIzIBmatUSiWOt30GaQTvp-QshBWlrIh4Qvhi6RHTMJgPTMLY980msUtTt4lpms6aoe7a5KselklVf6NLbBeGc3JSmSbgxW-dkrfHh8XsOZ2_Pr3M7uep5Sob0rixtEiFLQA5VxXNK1VSRh13BrhEJaxCBgKldGUFeZ7lLAPuGMupEK7kU3K9m9v77nPEMOh1HSw2jWmxG4MGIYHnQnIe6dUeXXWjb-N1GgA4p1QURVSwU9Z3IXisdO_rtfEbDVRv36j_vTFmbnYZXKM3jfuL7FPduypyeoAf3PADi-J93w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113300699</pqid></control><display><type>article</type><title>Three-stage supply chain allocation with fixed cost</title><source>Emerald Journals</source><source>Standard: Emerald eJournal Premier Collection</source><creator>Panicker, Vinay V ; Sridharan, R ; Ebenezer, B</creator><contributor>Sachdeva, Anish</contributor><creatorcontrib>Panicker, Vinay V ; Sridharan, R ; Ebenezer, B ; Sachdeva, Anish</creatorcontrib><description>Purpose - The purpose of this paper is of two-fold. First, the authors propose the application of genetic algorithm (GA)-based heuristic for solving a distribution allocation problem for a three-stage supply chain with fixed cost. Second, a methodology for parameter design in GA is discussed which can lead to better performance of the algorithm.Design methodology approach - A mathematical model is formulated as an integer-programming problem. The model is solved using GA-based heuristic and illustrated with a numerical example. An investigation is made for determining the best combination of the parameters of GA using factorial design procedure.Findings - The optimum population size for the selected problem size is found to be 100. The mutation probability for a better solution is 0.30. The objective function value at the above mentioned levels is better than that obtained at the other combinations.Research limitations implications - This work provides a good insight about the fixed cost transportation problem (FCTP) in a three-stage supply chain and design of numerical parameters for GA. The model developed assumes a single product environment in a single period. Hence, the present study can be extended to a multi-product, multi-period, and varying demand environment. In the parameter design, three distinct numerical parameters are considered. The parameters, population size and mutation probability are set at four levels and the parameter, crossover probability is set at three levels. More levels can be selected so that more combinations can be experimented.Originality value - The paper presents the formulation and solution of a distribution-allocation problem in a three-stage supply chain with fixed cost for a transportation route.</description><identifier>ISSN: 1741-038X</identifier><identifier>EISSN: 1758-7786</identifier><identifier>DOI: 10.1108/17410381211267691</identifier><identifier>CODEN: IMSYEY</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Algorithms ; Allocations ; Costs ; Customers ; Genetic algorithms ; Heuristic ; Integer programming ; Inventory ; Logistics ; Manufacturing ; Mathematical models ; Methodology ; Mutations ; Retail stores ; Studies ; Supply chain management ; Supply chains</subject><ispartof>Journal of manufacturing technology management, 2012-01, Vol.23 (7), p.853-868</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-741bce06c91e338f05f8b020d3da137e86c8e216e77dbf155452413d225066db3</citedby><cites>FETCH-LOGICAL-c384t-741bce06c91e338f05f8b020d3da137e86c8e216e77dbf155452413d225066db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/17410381211267691/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/17410381211267691/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11615,21675,27903,27904,52664,52667,53222,53350</link.rule.ids></links><search><contributor>Sachdeva, Anish</contributor><creatorcontrib>Panicker, Vinay V</creatorcontrib><creatorcontrib>Sridharan, R</creatorcontrib><creatorcontrib>Ebenezer, B</creatorcontrib><title>Three-stage supply chain allocation with fixed cost</title><title>Journal of manufacturing technology management</title><description>Purpose - The purpose of this paper is of two-fold. First, the authors propose the application of genetic algorithm (GA)-based heuristic for solving a distribution allocation problem for a three-stage supply chain with fixed cost. Second, a methodology for parameter design in GA is discussed which can lead to better performance of the algorithm.Design methodology approach - A mathematical model is formulated as an integer-programming problem. The model is solved using GA-based heuristic and illustrated with a numerical example. An investigation is made for determining the best combination of the parameters of GA using factorial design procedure.Findings - The optimum population size for the selected problem size is found to be 100. The mutation probability for a better solution is 0.30. The objective function value at the above mentioned levels is better than that obtained at the other combinations.Research limitations implications - This work provides a good insight about the fixed cost transportation problem (FCTP) in a three-stage supply chain and design of numerical parameters for GA. The model developed assumes a single product environment in a single period. Hence, the present study can be extended to a multi-product, multi-period, and varying demand environment. In the parameter design, three distinct numerical parameters are considered. The parameters, population size and mutation probability are set at four levels and the parameter, crossover probability is set at three levels. More levels can be selected so that more combinations can be experimented.Originality value - The paper presents the formulation and solution of a distribution-allocation problem in a three-stage supply chain with fixed cost for a transportation route.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Costs</subject><subject>Customers</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Integer programming</subject><subject>Inventory</subject><subject>Logistics</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Mutations</subject><subject>Retail stores</subject><subject>Studies</subject><subject>Supply chain management</subject><subject>Supply chains</subject><issn>1741-038X</issn><issn>1758-7786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10E1LxDAQBuAgCq6rP8BbwYsHq5mkTdKjLH7BgpcVvIU0mbpdum1NWnT_vVlWEFb2NHN43plhCLkEegtA1R3IDChXwACYkKKAIzIBmatUSiWOt30GaQTvp-QshBWlrIh4Qvhi6RHTMJgPTMLY980msUtTt4lpms6aoe7a5KselklVf6NLbBeGc3JSmSbgxW-dkrfHh8XsOZ2_Pr3M7uep5Sob0rixtEiFLQA5VxXNK1VSRh13BrhEJaxCBgKldGUFeZ7lLAPuGMupEK7kU3K9m9v77nPEMOh1HSw2jWmxG4MGIYHnQnIe6dUeXXWjb-N1GgA4p1QURVSwU9Z3IXisdO_rtfEbDVRv36j_vTFmbnYZXKM3jfuL7FPduypyeoAf3PADi-J93w</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Panicker, Vinay V</creator><creator>Sridharan, R</creator><creator>Ebenezer, B</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>Three-stage supply chain allocation with fixed cost</title><author>Panicker, Vinay V ; Sridharan, R ; Ebenezer, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-741bce06c91e338f05f8b020d3da137e86c8e216e77dbf155452413d225066db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Costs</topic><topic>Customers</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Integer programming</topic><topic>Inventory</topic><topic>Logistics</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Mutations</topic><topic>Retail stores</topic><topic>Studies</topic><topic>Supply chain management</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panicker, Vinay V</creatorcontrib><creatorcontrib>Sridharan, R</creatorcontrib><creatorcontrib>Ebenezer, B</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of manufacturing technology management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panicker, Vinay V</au><au>Sridharan, R</au><au>Ebenezer, B</au><au>Sachdeva, Anish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-stage supply chain allocation with fixed cost</atitle><jtitle>Journal of manufacturing technology management</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>23</volume><issue>7</issue><spage>853</spage><epage>868</epage><pages>853-868</pages><issn>1741-038X</issn><eissn>1758-7786</eissn><coden>IMSYEY</coden><abstract>Purpose - The purpose of this paper is of two-fold. First, the authors propose the application of genetic algorithm (GA)-based heuristic for solving a distribution allocation problem for a three-stage supply chain with fixed cost. Second, a methodology for parameter design in GA is discussed which can lead to better performance of the algorithm.Design methodology approach - A mathematical model is formulated as an integer-programming problem. The model is solved using GA-based heuristic and illustrated with a numerical example. An investigation is made for determining the best combination of the parameters of GA using factorial design procedure.Findings - The optimum population size for the selected problem size is found to be 100. The mutation probability for a better solution is 0.30. The objective function value at the above mentioned levels is better than that obtained at the other combinations.Research limitations implications - This work provides a good insight about the fixed cost transportation problem (FCTP) in a three-stage supply chain and design of numerical parameters for GA. The model developed assumes a single product environment in a single period. Hence, the present study can be extended to a multi-product, multi-period, and varying demand environment. In the parameter design, three distinct numerical parameters are considered. The parameters, population size and mutation probability are set at four levels and the parameter, crossover probability is set at three levels. More levels can be selected so that more combinations can be experimented.Originality value - The paper presents the formulation and solution of a distribution-allocation problem in a three-stage supply chain with fixed cost for a transportation route.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/17410381211267691</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-038X |
ispartof | Journal of manufacturing technology management, 2012-01, Vol.23 (7), p.853-868 |
issn | 1741-038X 1758-7786 |
language | eng |
recordid | cdi_emerald_primary_10_1108_17410381211267691 |
source | Emerald Journals; Standard: Emerald eJournal Premier Collection |
subjects | Algorithms Allocations Costs Customers Genetic algorithms Heuristic Integer programming Inventory Logistics Manufacturing Mathematical models Methodology Mutations Retail stores Studies Supply chain management Supply chains |
title | Three-stage supply chain allocation with fixed cost |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-stage%20supply%20chain%20allocation%20with%20fixed%20cost&rft.jtitle=Journal%20of%20manufacturing%20technology%20management&rft.au=Panicker,%20Vinay%20V&rft.date=2012-01-01&rft.volume=23&rft.issue=7&rft.spage=853&rft.epage=868&rft.pages=853-868&rft.issn=1741-038X&rft.eissn=1758-7786&rft.coden=IMSYEY&rft_id=info:doi/10.1108/17410381211267691&rft_dat=%3Cproquest_emera%3E2792987341%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113300699&rft_id=info:pmid/&rfr_iscdi=true |