A random walk solution for fractional diffusion equations

Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical methods for heat & fluid flow 2013-01, Vol.23 (1), p.7-22
Hauptverfasser: Zielinski, D.P, Voller, V.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 7
container_title International journal of numerical methods for heat & fluid flow
container_volume 23
creator Zielinski, D.P
Voller, V.R
description Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state, source free diffusion problems with fluxes expressed in terms of Caputo fractional derivatives. This class of problems takes account of non-locality in transport, expressed through parameters representing both the extent and direction of the non-locality.Design methodology approach - The method described here follows a similar approach to random walk methods previously developed for normal (local) diffusion. The key differences from standard methods are: first, the random shifting of the domain about the point of interest with, second, shift steps selected from non-symmetric, power-law tailed, Lévy probability distribution functions.Findings - The domain shifting scheme is verified by comparing predictive solutions to known one-dimensional and two-dimensional analytical solutions for fractional diffusion problems. The scheme is also applied to a problem of fractional diffusion in a non-Cartesian annulus domain. In contrast to the axisymmetric, steady state solution for normal diffusion, a non-axisymmetric solution results.Originality value - This is the first random walk scheme to utilize the concept of allowing the domain to undergo the random walk about a point of interest. Domain shifting scheme solutions of fractional diffusion in non-Cartesian domains provide an invaluable tool to direct the development of more sophisticated grid based finite element inspired fractional diffusion schemes.
doi_str_mv 10.1108/09615531311289088
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_09615531311289088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2972487731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-68c0ae0bc98f4e25a0fefc611412cf2e39dc3743ffd183ff0dabd64347dd6e0a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFZ_gLeAFw9GZ_Yru8dS_IKCFz2H7X5AatJtdxvEf29CPVlBLzPMvM87MC8hlwi3iKDuQEsUgiFDpEqDUkdkgpVQpRRKHJPJqJcDoE_JWc4rABCSywnRsyKZtYtd8WHa9yLHtt81cV2EmIqQjB0H0xauCaHPo-C3vRmX-ZycBNNmf_Hdp-Tt4f51_lQuXh6f57NFaTlWu1IqC8bD0moVuKfCQPDBSkSO1AbqmXaWVZyF4FANFZxZOskZr5yTHgybkuv93U2K297nXd012fq2NWsf-1xjVQGjlUbxN0oVk1xUakSvfqCr2Kfh1YFigjIKiumBwj1lU8w5-VBvUtOZ9Fkj1GPu9UHugwf2Ht_5ZFr3L8vN75YDtN64wL4AKd6P5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352320839</pqid></control><display><type>article</type><title>A random walk solution for fractional diffusion equations</title><source>Emerald</source><creator>Zielinski, D.P ; Voller, V.R</creator><creatorcontrib>Zielinski, D.P ; Voller, V.R</creatorcontrib><description>Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state, source free diffusion problems with fluxes expressed in terms of Caputo fractional derivatives. This class of problems takes account of non-locality in transport, expressed through parameters representing both the extent and direction of the non-locality.Design methodology approach - The method described here follows a similar approach to random walk methods previously developed for normal (local) diffusion. The key differences from standard methods are: first, the random shifting of the domain about the point of interest with, second, shift steps selected from non-symmetric, power-law tailed, Lévy probability distribution functions.Findings - The domain shifting scheme is verified by comparing predictive solutions to known one-dimensional and two-dimensional analytical solutions for fractional diffusion problems. The scheme is also applied to a problem of fractional diffusion in a non-Cartesian annulus domain. In contrast to the axisymmetric, steady state solution for normal diffusion, a non-axisymmetric solution results.Originality value - This is the first random walk scheme to utilize the concept of allowing the domain to undergo the random walk about a point of interest. Domain shifting scheme solutions of fractional diffusion in non-Cartesian domains provide an invaluable tool to direct the development of more sophisticated grid based finite element inspired fractional diffusion schemes.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/09615531311289088</identifier><identifier>CODEN: INMFEM</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Axisymmetric ; Brownian motion ; Central limit theorem ; Derivatives ; Diffusion ; Homogenization ; Mathematical analysis ; Mathematical models ; Methods ; Monte Carlo methods ; Probability distribution ; Problems ; Random walk ; Random walk theory ; Sediment transport ; Steady state ; Studies</subject><ispartof>International journal of numerical methods for heat &amp; fluid flow, 2013-01, Vol.23 (1), p.7-22</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-68c0ae0bc98f4e25a0fefc611412cf2e39dc3743ffd183ff0dabd64347dd6e0a3</citedby><cites>FETCH-LOGICAL-c417t-68c0ae0bc98f4e25a0fefc611412cf2e39dc3743ffd183ff0dabd64347dd6e0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09615531311289088/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09615531311289088/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Zielinski, D.P</creatorcontrib><creatorcontrib>Voller, V.R</creatorcontrib><title>A random walk solution for fractional diffusion equations</title><title>International journal of numerical methods for heat &amp; fluid flow</title><description>Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state, source free diffusion problems with fluxes expressed in terms of Caputo fractional derivatives. This class of problems takes account of non-locality in transport, expressed through parameters representing both the extent and direction of the non-locality.Design methodology approach - The method described here follows a similar approach to random walk methods previously developed for normal (local) diffusion. The key differences from standard methods are: first, the random shifting of the domain about the point of interest with, second, shift steps selected from non-symmetric, power-law tailed, Lévy probability distribution functions.Findings - The domain shifting scheme is verified by comparing predictive solutions to known one-dimensional and two-dimensional analytical solutions for fractional diffusion problems. The scheme is also applied to a problem of fractional diffusion in a non-Cartesian annulus domain. In contrast to the axisymmetric, steady state solution for normal diffusion, a non-axisymmetric solution results.Originality value - This is the first random walk scheme to utilize the concept of allowing the domain to undergo the random walk about a point of interest. Domain shifting scheme solutions of fractional diffusion in non-Cartesian domains provide an invaluable tool to direct the development of more sophisticated grid based finite element inspired fractional diffusion schemes.</description><subject>Axisymmetric</subject><subject>Brownian motion</subject><subject>Central limit theorem</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Homogenization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Monte Carlo methods</subject><subject>Probability distribution</subject><subject>Problems</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Sediment transport</subject><subject>Steady state</subject><subject>Studies</subject><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkE1Lw0AQhhdRsFZ_gLeAFw9GZ_Yru8dS_IKCFz2H7X5AatJtdxvEf29CPVlBLzPMvM87MC8hlwi3iKDuQEsUgiFDpEqDUkdkgpVQpRRKHJPJqJcDoE_JWc4rABCSywnRsyKZtYtd8WHa9yLHtt81cV2EmIqQjB0H0xauCaHPo-C3vRmX-ZycBNNmf_Hdp-Tt4f51_lQuXh6f57NFaTlWu1IqC8bD0moVuKfCQPDBSkSO1AbqmXaWVZyF4FANFZxZOskZr5yTHgybkuv93U2K297nXd012fq2NWsf-1xjVQGjlUbxN0oVk1xUakSvfqCr2Kfh1YFigjIKiumBwj1lU8w5-VBvUtOZ9Fkj1GPu9UHugwf2Ht_5ZFr3L8vN75YDtN64wL4AKd6P5w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Zielinski, D.P</creator><creator>Voller, V.R</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20130101</creationdate><title>A random walk solution for fractional diffusion equations</title><author>Zielinski, D.P ; Voller, V.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-68c0ae0bc98f4e25a0fefc611412cf2e39dc3743ffd183ff0dabd64347dd6e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Axisymmetric</topic><topic>Brownian motion</topic><topic>Central limit theorem</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Homogenization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Monte Carlo methods</topic><topic>Probability distribution</topic><topic>Problems</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Sediment transport</topic><topic>Steady state</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zielinski, D.P</creatorcontrib><creatorcontrib>Voller, V.R</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zielinski, D.P</au><au>Voller, V.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A random walk solution for fractional diffusion equations</atitle><jtitle>International journal of numerical methods for heat &amp; fluid flow</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>23</volume><issue>1</issue><spage>7</spage><epage>22</epage><pages>7-22</pages><issn>0961-5539</issn><eissn>1758-6585</eissn><coden>INMFEM</coden><abstract>Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state, source free diffusion problems with fluxes expressed in terms of Caputo fractional derivatives. This class of problems takes account of non-locality in transport, expressed through parameters representing both the extent and direction of the non-locality.Design methodology approach - The method described here follows a similar approach to random walk methods previously developed for normal (local) diffusion. The key differences from standard methods are: first, the random shifting of the domain about the point of interest with, second, shift steps selected from non-symmetric, power-law tailed, Lévy probability distribution functions.Findings - The domain shifting scheme is verified by comparing predictive solutions to known one-dimensional and two-dimensional analytical solutions for fractional diffusion problems. The scheme is also applied to a problem of fractional diffusion in a non-Cartesian annulus domain. In contrast to the axisymmetric, steady state solution for normal diffusion, a non-axisymmetric solution results.Originality value - This is the first random walk scheme to utilize the concept of allowing the domain to undergo the random walk about a point of interest. Domain shifting scheme solutions of fractional diffusion in non-Cartesian domains provide an invaluable tool to direct the development of more sophisticated grid based finite element inspired fractional diffusion schemes.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/09615531311289088</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0961-5539
ispartof International journal of numerical methods for heat & fluid flow, 2013-01, Vol.23 (1), p.7-22
issn 0961-5539
1758-6585
language eng
recordid cdi_emerald_primary_10_1108_09615531311289088
source Emerald
subjects Axisymmetric
Brownian motion
Central limit theorem
Derivatives
Diffusion
Homogenization
Mathematical analysis
Mathematical models
Methods
Monte Carlo methods
Probability distribution
Problems
Random walk
Random walk theory
Sediment transport
Steady state
Studies
title A random walk solution for fractional diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20random%20walk%20solution%20for%20fractional%20diffusion%20equations&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Zielinski,%20D.P&rft.date=2013-01-01&rft.volume=23&rft.issue=1&rft.spage=7&rft.epage=22&rft.pages=7-22&rft.issn=0961-5539&rft.eissn=1758-6585&rft.coden=INMFEM&rft_id=info:doi/10.1108/09615531311289088&rft_dat=%3Cproquest_emera%3E2972487731%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352320839&rft_id=info:pmid/&rfr_iscdi=true