A random walk solution for fractional diffusion equations
Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state...
Gespeichert in:
Veröffentlicht in: | International journal of numerical methods for heat & fluid flow 2013-01, Vol.23 (1), p.7-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 7 |
container_title | International journal of numerical methods for heat & fluid flow |
container_volume | 23 |
creator | Zielinski, D.P Voller, V.R |
description | Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state, source free diffusion problems with fluxes expressed in terms of Caputo fractional derivatives. This class of problems takes account of non-locality in transport, expressed through parameters representing both the extent and direction of the non-locality.Design methodology approach - The method described here follows a similar approach to random walk methods previously developed for normal (local) diffusion. The key differences from standard methods are: first, the random shifting of the domain about the point of interest with, second, shift steps selected from non-symmetric, power-law tailed, Lévy probability distribution functions.Findings - The domain shifting scheme is verified by comparing predictive solutions to known one-dimensional and two-dimensional analytical solutions for fractional diffusion problems. The scheme is also applied to a problem of fractional diffusion in a non-Cartesian annulus domain. In contrast to the axisymmetric, steady state solution for normal diffusion, a non-axisymmetric solution results.Originality value - This is the first random walk scheme to utilize the concept of allowing the domain to undergo the random walk about a point of interest. Domain shifting scheme solutions of fractional diffusion in non-Cartesian domains provide an invaluable tool to direct the development of more sophisticated grid based finite element inspired fractional diffusion schemes. |
doi_str_mv | 10.1108/09615531311289088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_09615531311289088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2972487731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-68c0ae0bc98f4e25a0fefc611412cf2e39dc3743ffd183ff0dabd64347dd6e0a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFZ_gLeAFw9GZ_Yru8dS_IKCFz2H7X5AatJtdxvEf29CPVlBLzPMvM87MC8hlwi3iKDuQEsUgiFDpEqDUkdkgpVQpRRKHJPJqJcDoE_JWc4rABCSywnRsyKZtYtd8WHa9yLHtt81cV2EmIqQjB0H0xauCaHPo-C3vRmX-ZycBNNmf_Hdp-Tt4f51_lQuXh6f57NFaTlWu1IqC8bD0moVuKfCQPDBSkSO1AbqmXaWVZyF4FANFZxZOskZr5yTHgybkuv93U2K297nXd012fq2NWsf-1xjVQGjlUbxN0oVk1xUakSvfqCr2Kfh1YFigjIKiumBwj1lU8w5-VBvUtOZ9Fkj1GPu9UHugwf2Ht_5ZFr3L8vN75YDtN64wL4AKd6P5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352320839</pqid></control><display><type>article</type><title>A random walk solution for fractional diffusion equations</title><source>Emerald</source><creator>Zielinski, D.P ; Voller, V.R</creator><creatorcontrib>Zielinski, D.P ; Voller, V.R</creatorcontrib><description>Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state, source free diffusion problems with fluxes expressed in terms of Caputo fractional derivatives. This class of problems takes account of non-locality in transport, expressed through parameters representing both the extent and direction of the non-locality.Design methodology approach - The method described here follows a similar approach to random walk methods previously developed for normal (local) diffusion. The key differences from standard methods are: first, the random shifting of the domain about the point of interest with, second, shift steps selected from non-symmetric, power-law tailed, Lévy probability distribution functions.Findings - The domain shifting scheme is verified by comparing predictive solutions to known one-dimensional and two-dimensional analytical solutions for fractional diffusion problems. The scheme is also applied to a problem of fractional diffusion in a non-Cartesian annulus domain. In contrast to the axisymmetric, steady state solution for normal diffusion, a non-axisymmetric solution results.Originality value - This is the first random walk scheme to utilize the concept of allowing the domain to undergo the random walk about a point of interest. Domain shifting scheme solutions of fractional diffusion in non-Cartesian domains provide an invaluable tool to direct the development of more sophisticated grid based finite element inspired fractional diffusion schemes.</description><identifier>ISSN: 0961-5539</identifier><identifier>EISSN: 1758-6585</identifier><identifier>DOI: 10.1108/09615531311289088</identifier><identifier>CODEN: INMFEM</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Axisymmetric ; Brownian motion ; Central limit theorem ; Derivatives ; Diffusion ; Homogenization ; Mathematical analysis ; Mathematical models ; Methods ; Monte Carlo methods ; Probability distribution ; Problems ; Random walk ; Random walk theory ; Sediment transport ; Steady state ; Studies</subject><ispartof>International journal of numerical methods for heat & fluid flow, 2013-01, Vol.23 (1), p.7-22</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-68c0ae0bc98f4e25a0fefc611412cf2e39dc3743ffd183ff0dabd64347dd6e0a3</citedby><cites>FETCH-LOGICAL-c417t-68c0ae0bc98f4e25a0fefc611412cf2e39dc3743ffd183ff0dabd64347dd6e0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09615531311289088/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09615531311289088/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Zielinski, D.P</creatorcontrib><creatorcontrib>Voller, V.R</creatorcontrib><title>A random walk solution for fractional diffusion equations</title><title>International journal of numerical methods for heat & fluid flow</title><description>Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state, source free diffusion problems with fluxes expressed in terms of Caputo fractional derivatives. This class of problems takes account of non-locality in transport, expressed through parameters representing both the extent and direction of the non-locality.Design methodology approach - The method described here follows a similar approach to random walk methods previously developed for normal (local) diffusion. The key differences from standard methods are: first, the random shifting of the domain about the point of interest with, second, shift steps selected from non-symmetric, power-law tailed, Lévy probability distribution functions.Findings - The domain shifting scheme is verified by comparing predictive solutions to known one-dimensional and two-dimensional analytical solutions for fractional diffusion problems. The scheme is also applied to a problem of fractional diffusion in a non-Cartesian annulus domain. In contrast to the axisymmetric, steady state solution for normal diffusion, a non-axisymmetric solution results.Originality value - This is the first random walk scheme to utilize the concept of allowing the domain to undergo the random walk about a point of interest. Domain shifting scheme solutions of fractional diffusion in non-Cartesian domains provide an invaluable tool to direct the development of more sophisticated grid based finite element inspired fractional diffusion schemes.</description><subject>Axisymmetric</subject><subject>Brownian motion</subject><subject>Central limit theorem</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Homogenization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Monte Carlo methods</subject><subject>Probability distribution</subject><subject>Problems</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Sediment transport</subject><subject>Steady state</subject><subject>Studies</subject><issn>0961-5539</issn><issn>1758-6585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkE1Lw0AQhhdRsFZ_gLeAFw9GZ_Yru8dS_IKCFz2H7X5AatJtdxvEf29CPVlBLzPMvM87MC8hlwi3iKDuQEsUgiFDpEqDUkdkgpVQpRRKHJPJqJcDoE_JWc4rABCSywnRsyKZtYtd8WHa9yLHtt81cV2EmIqQjB0H0xauCaHPo-C3vRmX-ZycBNNmf_Hdp-Tt4f51_lQuXh6f57NFaTlWu1IqC8bD0moVuKfCQPDBSkSO1AbqmXaWVZyF4FANFZxZOskZr5yTHgybkuv93U2K297nXd012fq2NWsf-1xjVQGjlUbxN0oVk1xUakSvfqCr2Kfh1YFigjIKiumBwj1lU8w5-VBvUtOZ9Fkj1GPu9UHugwf2Ht_5ZFr3L8vN75YDtN64wL4AKd6P5w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Zielinski, D.P</creator><creator>Voller, V.R</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20130101</creationdate><title>A random walk solution for fractional diffusion equations</title><author>Zielinski, D.P ; Voller, V.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-68c0ae0bc98f4e25a0fefc611412cf2e39dc3743ffd183ff0dabd64347dd6e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Axisymmetric</topic><topic>Brownian motion</topic><topic>Central limit theorem</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Homogenization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Monte Carlo methods</topic><topic>Probability distribution</topic><topic>Problems</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Sediment transport</topic><topic>Steady state</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zielinski, D.P</creatorcontrib><creatorcontrib>Voller, V.R</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of numerical methods for heat & fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zielinski, D.P</au><au>Voller, V.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A random walk solution for fractional diffusion equations</atitle><jtitle>International journal of numerical methods for heat & fluid flow</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>23</volume><issue>1</issue><spage>7</spage><epage>22</epage><pages>7-22</pages><issn>0961-5539</issn><eissn>1758-6585</eissn><coden>INMFEM</coden><abstract>Purpose - The purpose of this paper is to develop an alternative numerical approach for describing fractional diffusion in Cartesian and non-Cartesian domains using a Monte Carlo random walk scheme. The resulting domain shifting scheme provides a numerical solution for multi-dimensional steady state, source free diffusion problems with fluxes expressed in terms of Caputo fractional derivatives. This class of problems takes account of non-locality in transport, expressed through parameters representing both the extent and direction of the non-locality.Design methodology approach - The method described here follows a similar approach to random walk methods previously developed for normal (local) diffusion. The key differences from standard methods are: first, the random shifting of the domain about the point of interest with, second, shift steps selected from non-symmetric, power-law tailed, Lévy probability distribution functions.Findings - The domain shifting scheme is verified by comparing predictive solutions to known one-dimensional and two-dimensional analytical solutions for fractional diffusion problems. The scheme is also applied to a problem of fractional diffusion in a non-Cartesian annulus domain. In contrast to the axisymmetric, steady state solution for normal diffusion, a non-axisymmetric solution results.Originality value - This is the first random walk scheme to utilize the concept of allowing the domain to undergo the random walk about a point of interest. Domain shifting scheme solutions of fractional diffusion in non-Cartesian domains provide an invaluable tool to direct the development of more sophisticated grid based finite element inspired fractional diffusion schemes.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/09615531311289088</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-5539 |
ispartof | International journal of numerical methods for heat & fluid flow, 2013-01, Vol.23 (1), p.7-22 |
issn | 0961-5539 1758-6585 |
language | eng |
recordid | cdi_emerald_primary_10_1108_09615531311289088 |
source | Emerald |
subjects | Axisymmetric Brownian motion Central limit theorem Derivatives Diffusion Homogenization Mathematical analysis Mathematical models Methods Monte Carlo methods Probability distribution Problems Random walk Random walk theory Sediment transport Steady state Studies |
title | A random walk solution for fractional diffusion equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20random%20walk%20solution%20for%20fractional%20diffusion%20equations&rft.jtitle=International%20journal%20of%20numerical%20methods%20for%20heat%20&%20fluid%20flow&rft.au=Zielinski,%20D.P&rft.date=2013-01-01&rft.volume=23&rft.issue=1&rft.spage=7&rft.epage=22&rft.pages=7-22&rft.issn=0961-5539&rft.eissn=1758-6585&rft.coden=INMFEM&rft_id=info:doi/10.1108/09615531311289088&rft_dat=%3Cproquest_emera%3E2972487731%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352320839&rft_id=info:pmid/&rfr_iscdi=true |