Error bounds for the FEM numerical solution of non-linear field problems

A bound for a norm of the difference between the computed and exact solution vectors for static, stationary or quasistationary non-linear magnetic fields is derived by employing the polarization fixed point iterative method. At each iteration step, the linearized field is computed by using the finit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compel 2004-09, Vol.23 (3), p.835-844
Hauptverfasser: Ciric, Ioan R., Maghiar, Theodor, Hantila, Florea, Ifrim, Costin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 844
container_issue 3
container_start_page 835
container_title Compel
container_volume 23
creator Ciric, Ioan R.
Maghiar, Theodor
Hantila, Florea
Ifrim, Costin
description A bound for a norm of the difference between the computed and exact solution vectors for static, stationary or quasistationary non-linear magnetic fields is derived by employing the polarization fixed point iterative method. At each iteration step, the linearized field is computed by using the finite element method. The error introduced in the iterative procedure is controlled by the number of iterations, while the error due to the chosen discretization mesh is evaluated on the basis of the hypercircle principle.
doi_str_mv 10.1108/03321640410510802
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_03321640410510802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36201969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-f8afe26186e4fedce2cfcc2645357790e73c95da8ceefbeb3d40f71136464d03</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EEqXwA9gsBiYC58_EI6pailTE0j1KnbNI5cbFbgb-Pa6KGCgIL_bpnvfeOx8h1wzuGYPqAYTgTEuQDFSOgZ-QEQclC6VBn5LRPl9kwJyTi5TWkI9RMCLzaYwh0lUY-jZRl5-7N6Sz6Qvthw3GzjaepuCHXRd6GhztQ1_4rscmUtehb-k2hpXHTbokZ67xCa--7jFZzqbLybxYvD49Tx4Xhc2t7QpXNQ65ZpVG6bC1yK2zlmuphCpLA1gKa1TbVBbRrXAlWgmuZExoqWULYkxuD2Wz7_uAaVdvumTR-6bHMKRaaA7MaPMvyCtVlYrrDN78ANdhiH2eoeZgDJPC7CF2gGwMKUV09TZ2myZ-1Azq_QLqowVkzd1Bg_kjG99-S47Qetu6jMPv-N8On7Cikqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209914396</pqid></control><display><type>article</type><title>Error bounds for the FEM numerical solution of non-linear field problems</title><source>Emerald Journals</source><creator>Ciric, Ioan R. ; Maghiar, Theodor ; Hantila, Florea ; Ifrim, Costin</creator><creatorcontrib>Ciric, Ioan R. ; Maghiar, Theodor ; Hantila, Florea ; Ifrim, Costin</creatorcontrib><description>A bound for a norm of the difference between the computed and exact solution vectors for static, stationary or quasistationary non-linear magnetic fields is derived by employing the polarization fixed point iterative method. At each iteration step, the linearized field is computed by using the finite element method. The error introduced in the iterative procedure is controlled by the number of iterations, while the error due to the chosen discretization mesh is evaluated on the basis of the hypercircle principle.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/03321640410510802</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Error analysis ; Magnetic fields ; Studies</subject><ispartof>Compel, 2004-09, Vol.23 (3), p.835-844</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright MCB UP Limited (MCB) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-f8afe26186e4fedce2cfcc2645357790e73c95da8ceefbeb3d40f71136464d03</citedby><cites>FETCH-LOGICAL-c410t-f8afe26186e4fedce2cfcc2645357790e73c95da8ceefbeb3d40f71136464d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640410510802/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321640410510802/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,27923,27924,52685,52688</link.rule.ids></links><search><creatorcontrib>Ciric, Ioan R.</creatorcontrib><creatorcontrib>Maghiar, Theodor</creatorcontrib><creatorcontrib>Hantila, Florea</creatorcontrib><creatorcontrib>Ifrim, Costin</creatorcontrib><title>Error bounds for the FEM numerical solution of non-linear field problems</title><title>Compel</title><description>A bound for a norm of the difference between the computed and exact solution vectors for static, stationary or quasistationary non-linear magnetic fields is derived by employing the polarization fixed point iterative method. At each iteration step, the linearized field is computed by using the finite element method. The error introduced in the iterative procedure is controlled by the number of iterations, while the error due to the chosen discretization mesh is evaluated on the basis of the hypercircle principle.</description><subject>Error analysis</subject><subject>Magnetic fields</subject><subject>Studies</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkT1PwzAQhi0EEqXwA9gsBiYC58_EI6pailTE0j1KnbNI5cbFbgb-Pa6KGCgIL_bpnvfeOx8h1wzuGYPqAYTgTEuQDFSOgZ-QEQclC6VBn5LRPl9kwJyTi5TWkI9RMCLzaYwh0lUY-jZRl5-7N6Sz6Qvthw3GzjaepuCHXRd6GhztQ1_4rscmUtehb-k2hpXHTbokZ67xCa--7jFZzqbLybxYvD49Tx4Xhc2t7QpXNQ65ZpVG6bC1yK2zlmuphCpLA1gKa1TbVBbRrXAlWgmuZExoqWULYkxuD2Wz7_uAaVdvumTR-6bHMKRaaA7MaPMvyCtVlYrrDN78ANdhiH2eoeZgDJPC7CF2gGwMKUV09TZ2myZ-1Azq_QLqowVkzd1Bg_kjG99-S47Qetu6jMPv-N8On7Cikqo</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Ciric, Ioan R.</creator><creator>Maghiar, Theodor</creator><creator>Hantila, Florea</creator><creator>Ifrim, Costin</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20040901</creationdate><title>Error bounds for the FEM numerical solution of non-linear field problems</title><author>Ciric, Ioan R. ; Maghiar, Theodor ; Hantila, Florea ; Ifrim, Costin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-f8afe26186e4fedce2cfcc2645357790e73c95da8ceefbeb3d40f71136464d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Error analysis</topic><topic>Magnetic fields</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciric, Ioan R.</creatorcontrib><creatorcontrib>Maghiar, Theodor</creatorcontrib><creatorcontrib>Hantila, Florea</creatorcontrib><creatorcontrib>Ifrim, Costin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciric, Ioan R.</au><au>Maghiar, Theodor</au><au>Hantila, Florea</au><au>Ifrim, Costin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error bounds for the FEM numerical solution of non-linear field problems</atitle><jtitle>Compel</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>23</volume><issue>3</issue><spage>835</spage><epage>844</epage><pages>835-844</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>A bound for a norm of the difference between the computed and exact solution vectors for static, stationary or quasistationary non-linear magnetic fields is derived by employing the polarization fixed point iterative method. At each iteration step, the linearized field is computed by using the finite element method. The error introduced in the iterative procedure is controlled by the number of iterations, while the error due to the chosen discretization mesh is evaluated on the basis of the hypercircle principle.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/03321640410510802</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0332-1649
ispartof Compel, 2004-09, Vol.23 (3), p.835-844
issn 0332-1649
2054-5606
language eng
recordid cdi_emerald_primary_10_1108_03321640410510802
source Emerald Journals
subjects Error analysis
Magnetic fields
Studies
title Error bounds for the FEM numerical solution of non-linear field problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20bounds%20for%20the%20FEM%20numerical%20solution%20of%20non-linear%20field%20problems&rft.jtitle=Compel&rft.au=Ciric,%20Ioan%20R.&rft.date=2004-09-01&rft.volume=23&rft.issue=3&rft.spage=835&rft.epage=844&rft.pages=835-844&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/03321640410510802&rft_dat=%3Cproquest_emera%3E36201969%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209914396&rft_id=info:pmid/&rfr_iscdi=true