An entropy-switched adaptive smoothing approach for time series data

This paper describes a method of removing noise from time series data records whilst preserving salient features of short duration, such as sharp transitions and significant peaks. A practical example is drawn from fault-current testing of circuit breakers, for which the scheme was originally design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensor review 2003, Vol.23 (1), p.40-43
Hauptverfasser: Telfer, D.J., Spencer, J.W., Jones, G.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 40
container_title Sensor review
container_volume 23
creator Telfer, D.J.
Spencer, J.W.
Jones, G.R.
description This paper describes a method of removing noise from time series data records whilst preserving salient features of short duration, such as sharp transitions and significant peaks. A practical example is drawn from fault-current testing of circuit breakers, for which the scheme was originally designed. It is demonstrated that the clarity of signal traces can be improved while preserving important transient features. However, the approach is generic and based upon the entropy gradient detection method used in image processing. Local entropy is used as a criterion for selecting the degree of smoothing required, so that features of interest can be preserved. Algorithm modularity allows ready adaptation for specific needs.
doi_str_mv 10.1108/02602280310457938
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_02602280310457938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>320218161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-99bed5c9c1eb437ff047faecfb93f61500f833889518793cc500ef0063eff7db3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwA9giFhYC_khie6xK-ZAqscBsOc6ZpkriYLug_ntclYkycMtJ9z7v6e5F6JLgW0KwuMO0wpQKzAguSi6ZOEITwkuRV4KKYzTZ6XkCxCk6C2GNMaFFxSbofjZkMETvxm0evtpoVtBkutFjbD8hC71zcdUO75keR--0WWXW-Sy2fdLAtxCyRkd9jk6s7gJc_PQpentYvM6f8uXL4_N8tswNLXjMpayhKY00BOqCcWtxwa0GY2vJbEVKjK1gTAhZEpFeMCZNwGJcMbCWNzWbouv93nTLxwZCVH0bDHSdHsBtguIFS8WZTOTVL3LtNn5IxylKK1FIUZEEkT1kvAvBg1Wjb3vtt4pgtUtVHaSaPHjvgR687pp_WW7-thygamws-wZJG4UE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>226849861</pqid></control><display><type>article</type><title>An entropy-switched adaptive smoothing approach for time series data</title><source>Emerald Journals</source><creator>Telfer, D.J. ; Spencer, J.W. ; Jones, G.R.</creator><creatorcontrib>Telfer, D.J. ; Spencer, J.W. ; Jones, G.R.</creatorcontrib><description>This paper describes a method of removing noise from time series data records whilst preserving salient features of short duration, such as sharp transitions and significant peaks. A practical example is drawn from fault-current testing of circuit breakers, for which the scheme was originally designed. It is demonstrated that the clarity of signal traces can be improved while preserving important transient features. However, the approach is generic and based upon the entropy gradient detection method used in image processing. Local entropy is used as a criterion for selecting the degree of smoothing required, so that features of interest can be preserved. Algorithm modularity allows ready adaptation for specific needs.</description><identifier>ISSN: 0260-2288</identifier><identifier>EISSN: 1758-6828</identifier><identifier>DOI: 10.1108/02602280310457938</identifier><identifier>CODEN: SNRVDY</identifier><language>eng</language><publisher>Bradford: MCB UP Ltd</publisher><subject>Algorithms ; Archives &amp; records ; Datasets ; Endangered &amp; extinct species ; Entropy ; Filters ; Noise ; Studies ; Time series</subject><ispartof>Sensor review, 2003, Vol.23 (1), p.40-43</ispartof><rights>MCB UP Limited</rights><rights>Copyright MCB UP Limited (MCB) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-99bed5c9c1eb437ff047faecfb93f61500f833889518793cc500ef0063eff7db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02602280310457938/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02602280310457938/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,4009,11615,27902,27903,27904,52664,52667</link.rule.ids></links><search><creatorcontrib>Telfer, D.J.</creatorcontrib><creatorcontrib>Spencer, J.W.</creatorcontrib><creatorcontrib>Jones, G.R.</creatorcontrib><title>An entropy-switched adaptive smoothing approach for time series data</title><title>Sensor review</title><description>This paper describes a method of removing noise from time series data records whilst preserving salient features of short duration, such as sharp transitions and significant peaks. A practical example is drawn from fault-current testing of circuit breakers, for which the scheme was originally designed. It is demonstrated that the clarity of signal traces can be improved while preserving important transient features. However, the approach is generic and based upon the entropy gradient detection method used in image processing. Local entropy is used as a criterion for selecting the degree of smoothing required, so that features of interest can be preserved. Algorithm modularity allows ready adaptation for specific needs.</description><subject>Algorithms</subject><subject>Archives &amp; records</subject><subject>Datasets</subject><subject>Endangered &amp; extinct species</subject><subject>Entropy</subject><subject>Filters</subject><subject>Noise</subject><subject>Studies</subject><subject>Time series</subject><issn>0260-2288</issn><issn>1758-6828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkD1PwzAQhi0EEqXwA9giFhYC_khie6xK-ZAqscBsOc6ZpkriYLug_ntclYkycMtJ9z7v6e5F6JLgW0KwuMO0wpQKzAguSi6ZOEITwkuRV4KKYzTZ6XkCxCk6C2GNMaFFxSbofjZkMETvxm0evtpoVtBkutFjbD8hC71zcdUO75keR--0WWXW-Sy2fdLAtxCyRkd9jk6s7gJc_PQpentYvM6f8uXL4_N8tswNLXjMpayhKY00BOqCcWtxwa0GY2vJbEVKjK1gTAhZEpFeMCZNwGJcMbCWNzWbouv93nTLxwZCVH0bDHSdHsBtguIFS8WZTOTVL3LtNn5IxylKK1FIUZEEkT1kvAvBg1Wjb3vtt4pgtUtVHaSaPHjvgR687pp_WW7-thygamws-wZJG4UE</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Telfer, D.J.</creator><creator>Spencer, J.W.</creator><creator>Jones, G.R.</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>2003</creationdate><title>An entropy-switched adaptive smoothing approach for time series data</title><author>Telfer, D.J. ; Spencer, J.W. ; Jones, G.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-99bed5c9c1eb437ff047faecfb93f61500f833889518793cc500ef0063eff7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Archives &amp; records</topic><topic>Datasets</topic><topic>Endangered &amp; extinct species</topic><topic>Entropy</topic><topic>Filters</topic><topic>Noise</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Telfer, D.J.</creatorcontrib><creatorcontrib>Spencer, J.W.</creatorcontrib><creatorcontrib>Jones, G.R.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Sensor review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Telfer, D.J.</au><au>Spencer, J.W.</au><au>Jones, G.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An entropy-switched adaptive smoothing approach for time series data</atitle><jtitle>Sensor review</jtitle><date>2003</date><risdate>2003</risdate><volume>23</volume><issue>1</issue><spage>40</spage><epage>43</epage><pages>40-43</pages><issn>0260-2288</issn><eissn>1758-6828</eissn><coden>SNRVDY</coden><abstract>This paper describes a method of removing noise from time series data records whilst preserving salient features of short duration, such as sharp transitions and significant peaks. A practical example is drawn from fault-current testing of circuit breakers, for which the scheme was originally designed. It is demonstrated that the clarity of signal traces can be improved while preserving important transient features. However, the approach is generic and based upon the entropy gradient detection method used in image processing. Local entropy is used as a criterion for selecting the degree of smoothing required, so that features of interest can be preserved. Algorithm modularity allows ready adaptation for specific needs.</abstract><cop>Bradford</cop><pub>MCB UP Ltd</pub><doi>10.1108/02602280310457938</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0260-2288
ispartof Sensor review, 2003, Vol.23 (1), p.40-43
issn 0260-2288
1758-6828
language eng
recordid cdi_emerald_primary_10_1108_02602280310457938
source Emerald Journals
subjects Algorithms
Archives & records
Datasets
Endangered & extinct species
Entropy
Filters
Noise
Studies
Time series
title An entropy-switched adaptive smoothing approach for time series data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20entropy-switched%20adaptive%20smoothing%20approach%20for%20time%20series%20data&rft.jtitle=Sensor%20review&rft.au=Telfer,%20D.J.&rft.date=2003&rft.volume=23&rft.issue=1&rft.spage=40&rft.epage=43&rft.pages=40-43&rft.issn=0260-2288&rft.eissn=1758-6828&rft.coden=SNRVDY&rft_id=info:doi/10.1108/02602280310457938&rft_dat=%3Cproquest_emera%3E320218161%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=226849861&rft_id=info:pmid/&rfr_iscdi=true