Oscillation Criteria Based on a New Weighted Function for Linear Matrix Hamiltonian Systems

By employing a generalized Riccati technique and an integral averaging technique, some new oscillation criteria are established for the second-order matrix differential system U′=A(x)U+B(t)V, V′=C(x)U−A∗(t)V, where A(t), B(t), and C(t) are (n×n)-matrices, and B, C are Hermitian. These results are sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete dynamics in nature and society 2011, Vol.2011 (2011), p.1-12
Hauptverfasser: Guo, Yingxin, Wang, Junchang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2011
container_start_page 1
container_title Discrete dynamics in nature and society
container_volume 2011
creator Guo, Yingxin
Wang, Junchang
description By employing a generalized Riccati technique and an integral averaging technique, some new oscillation criteria are established for the second-order matrix differential system U′=A(x)U+B(t)V, V′=C(x)U−A∗(t)V, where A(t), B(t), and C(t) are (n×n)-matrices, and B, C are Hermitian. These results are sharper than some previous results.
format Article
fullrecord <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_489017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>489017</sourcerecordid><originalsourceid>FETCH-emarefa_primary_4890173</originalsourceid><addsrcrecordid>eNqFissKwjAQRYMo-PwEYX6gkEZp49ZiceFjoaDgogw61ZE2lSSi_XuLuHd1D-fcluiFkYwDreNju2GpokAqFXVF37m7lErqmeqJ09aduSjQc2UgsezJMsIcHV2gMQgbesGB-HrzjUmf5vx95pWFFRtCC2v0lt-wxJILXxlGA7vaeSrdUHRyLByNfjsQ43SxT5YBlWgpx-xhuaE6m-qZDOPJv_4BMCxAMA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillation Criteria Based on a New Weighted Function for Linear Matrix Hamiltonian Systems</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Yingxin ; Wang, Junchang</creator><creatorcontrib>Guo, Yingxin ; Wang, Junchang</creatorcontrib><description>By employing a generalized Riccati technique and an integral averaging technique, some new oscillation criteria are established for the second-order matrix differential system U′=A(x)U+B(t)V, V′=C(x)U−A∗(t)V, where A(t), B(t), and C(t) are (n×n)-matrices, and B, C are Hermitian. These results are sharper than some previous results.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Discrete dynamics in nature and society, 2011, Vol.2011 (2011), p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Guo, Yingxin</creatorcontrib><creatorcontrib>Wang, Junchang</creatorcontrib><title>Oscillation Criteria Based on a New Weighted Function for Linear Matrix Hamiltonian Systems</title><title>Discrete dynamics in nature and society</title><description>By employing a generalized Riccati technique and an integral averaging technique, some new oscillation criteria are established for the second-order matrix differential system U′=A(x)U+B(t)V, V′=C(x)U−A∗(t)V, where A(t), B(t), and C(t) are (n×n)-matrices, and B, C are Hermitian. These results are sharper than some previous results.</description><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFissKwjAQRYMo-PwEYX6gkEZp49ZiceFjoaDgogw61ZE2lSSi_XuLuHd1D-fcluiFkYwDreNju2GpokAqFXVF37m7lErqmeqJ09aduSjQc2UgsezJMsIcHV2gMQgbesGB-HrzjUmf5vx95pWFFRtCC2v0lt-wxJILXxlGA7vaeSrdUHRyLByNfjsQ43SxT5YBlWgpx-xhuaE6m-qZDOPJv_4BMCxAMA</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Guo, Yingxin</creator><creator>Wang, Junchang</creator><general>Hindawi Puplishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope></search><sort><creationdate>2011</creationdate><title>Oscillation Criteria Based on a New Weighted Function for Linear Matrix Hamiltonian Systems</title><author>Guo, Yingxin ; Wang, Junchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_4890173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yingxin</creatorcontrib><creatorcontrib>Wang, Junchang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yingxin</au><au>Wang, Junchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation Criteria Based on a New Weighted Function for Linear Matrix Hamiltonian Systems</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2011</date><risdate>2011</risdate><volume>2011</volume><issue>2011</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>By employing a generalized Riccati technique and an integral averaging technique, some new oscillation criteria are established for the second-order matrix differential system U′=A(x)U+B(t)V, V′=C(x)U−A∗(t)V, where A(t), B(t), and C(t) are (n×n)-matrices, and B, C are Hermitian. These results are sharper than some previous results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete dynamics in nature and society, 2011, Vol.2011 (2011), p.1-12
issn 1026-0226
1607-887X
language eng
recordid cdi_emarefa_primary_489017
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Oscillation Criteria Based on a New Weighted Function for Linear Matrix Hamiltonian Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20Criteria%20Based%20on%20a%20New%20Weighted%20Function%20for%20Linear%20Matrix%20Hamiltonian%20Systems&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Guo,%20Yingxin&rft.date=2011&rft.volume=2011&rft.issue=2011&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/&rft_dat=%3Cemarefa%3E489017%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true