Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures
Experimental and numerical methods are used to explore the stresses generated around bone screws used in rigid internal fixation of mandibular fractures. These results are intended to aid in decisions concerning both the design and the use of these bone screws. A finite element (FE) model of a human...
Gespeichert in:
Veröffentlicht in: | Modelling and simulation in engineering 2008, Vol.2008 (2008), p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2008 |
container_start_page | 1 |
container_title | Modelling and simulation in engineering |
container_volume | 2008 |
creator | Chaudhary, Naresh Lovald, Scott T. Wagner, Jon Khraishi, Tariq Baack, Bret |
description | Experimental and numerical methods are used to explore the stresses generated around bone screws used in rigid internal fixation of mandibular fractures. These results are intended to aid in decisions concerning both the design and the use of these bone screws. A finite element (FE) model of a human mandible is created with a fixated fracture in the parasymphyseal region. The mandibular model is anatomically loaded, and the forces exerted by the fixation plate onto the simplified screws are obtained and transferred to another finite element submodel of a screw implant embedded in a trilaminate block with material properties of cortical and cancellous bone. The stress in the bone surrounding the screw implant is obtained and compared for different screw configurations. The submodel analyses are further compared to and validated with simple axial experimental and numerical screw pull-out models. Results of the screw FE analysis (FEA) submodel show that a unicortical screw of 2.6 mm major diameter and 1.0 mm pitch will cause less bone damage than a bicortical screw of 2.3 mm major diameter and 1.0 mm pitch. The results of this study suggest that bicortical drilling can be avoided by using screws of a larger major diameter. |
format | Article |
fullrecord | <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_486349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>486349</sourcerecordid><originalsourceid>FETCH-emarefa_primary_4863493</originalsourceid><addsrcrecordid>eNqFTssKgkAUHaIgKT8huD8gGL7XodSiFj3WcdM7MqCj3FGyv2-CWrc6Tw5nJpxtnCZeFPvR_MejbLsUrjHq4YdhEgVB7DtC5lNPrFrSAzaAuoLT2FqjtOrYVdQoXUMn4VIyPQ3cDFUgO4azqlUFBz0Qa1st1ISD6vSnerQr6jE2yFAwlsPIZNZiIbEx5H5xJTZFft3tPWqRSeK9tx-QX_cwjYMwC_7lbxFMRTQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures</title><source>Wiley Online Library</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chaudhary, Naresh ; Lovald, Scott T. ; Wagner, Jon ; Khraishi, Tariq ; Baack, Bret</creator><creatorcontrib>Chaudhary, Naresh ; Lovald, Scott T. ; Wagner, Jon ; Khraishi, Tariq ; Baack, Bret</creatorcontrib><description>Experimental and numerical methods are used to explore the stresses generated around bone screws used in rigid internal fixation of mandibular fractures. These results are intended to aid in decisions concerning both the design and the use of these bone screws. A finite element (FE) model of a human mandible is created with a fixated fracture in the parasymphyseal region. The mandibular model is anatomically loaded, and the forces exerted by the fixation plate onto the simplified screws are obtained and transferred to another finite element submodel of a screw implant embedded in a trilaminate block with material properties of cortical and cancellous bone. The stress in the bone surrounding the screw implant is obtained and compared for different screw configurations. The submodel analyses are further compared to and validated with simple axial experimental and numerical screw pull-out models. Results of the screw FE analysis (FEA) submodel show that a unicortical screw of 2.6 mm major diameter and 1.0 mm pitch will cause less bone damage than a bicortical screw of 2.3 mm major diameter and 1.0 mm pitch. The results of this study suggest that bicortical drilling can be avoided by using screws of a larger major diameter.</description><identifier>ISSN: 1687-5591</identifier><identifier>EISSN: 1687-5605</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Modelling and simulation in engineering, 2008, Vol.2008 (2008), p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Chaudhary, Naresh</creatorcontrib><creatorcontrib>Lovald, Scott T.</creatorcontrib><creatorcontrib>Wagner, Jon</creatorcontrib><creatorcontrib>Khraishi, Tariq</creatorcontrib><creatorcontrib>Baack, Bret</creatorcontrib><title>Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures</title><title>Modelling and simulation in engineering</title><description>Experimental and numerical methods are used to explore the stresses generated around bone screws used in rigid internal fixation of mandibular fractures. These results are intended to aid in decisions concerning both the design and the use of these bone screws. A finite element (FE) model of a human mandible is created with a fixated fracture in the parasymphyseal region. The mandibular model is anatomically loaded, and the forces exerted by the fixation plate onto the simplified screws are obtained and transferred to another finite element submodel of a screw implant embedded in a trilaminate block with material properties of cortical and cancellous bone. The stress in the bone surrounding the screw implant is obtained and compared for different screw configurations. The submodel analyses are further compared to and validated with simple axial experimental and numerical screw pull-out models. Results of the screw FE analysis (FEA) submodel show that a unicortical screw of 2.6 mm major diameter and 1.0 mm pitch will cause less bone damage than a bicortical screw of 2.3 mm major diameter and 1.0 mm pitch. The results of this study suggest that bicortical drilling can be avoided by using screws of a larger major diameter.</description><issn>1687-5591</issn><issn>1687-5605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFTssKgkAUHaIgKT8huD8gGL7XodSiFj3WcdM7MqCj3FGyv2-CWrc6Tw5nJpxtnCZeFPvR_MejbLsUrjHq4YdhEgVB7DtC5lNPrFrSAzaAuoLT2FqjtOrYVdQoXUMn4VIyPQ3cDFUgO4azqlUFBz0Qa1st1ISD6vSnerQr6jE2yFAwlsPIZNZiIbEx5H5xJTZFft3tPWqRSeK9tx-QX_cwjYMwC_7lbxFMRTQ</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Chaudhary, Naresh</creator><creator>Lovald, Scott T.</creator><creator>Wagner, Jon</creator><creator>Khraishi, Tariq</creator><creator>Baack, Bret</creator><general>Hindawi Puplishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope></search><sort><creationdate>2008</creationdate><title>Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures</title><author>Chaudhary, Naresh ; Lovald, Scott T. ; Wagner, Jon ; Khraishi, Tariq ; Baack, Bret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_4863493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhary, Naresh</creatorcontrib><creatorcontrib>Lovald, Scott T.</creatorcontrib><creatorcontrib>Wagner, Jon</creatorcontrib><creatorcontrib>Khraishi, Tariq</creatorcontrib><creatorcontrib>Baack, Bret</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><jtitle>Modelling and simulation in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhary, Naresh</au><au>Lovald, Scott T.</au><au>Wagner, Jon</au><au>Khraishi, Tariq</au><au>Baack, Bret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures</atitle><jtitle>Modelling and simulation in engineering</jtitle><date>2008</date><risdate>2008</risdate><volume>2008</volume><issue>2008</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1687-5591</issn><eissn>1687-5605</eissn><abstract>Experimental and numerical methods are used to explore the stresses generated around bone screws used in rigid internal fixation of mandibular fractures. These results are intended to aid in decisions concerning both the design and the use of these bone screws. A finite element (FE) model of a human mandible is created with a fixated fracture in the parasymphyseal region. The mandibular model is anatomically loaded, and the forces exerted by the fixation plate onto the simplified screws are obtained and transferred to another finite element submodel of a screw implant embedded in a trilaminate block with material properties of cortical and cancellous bone. The stress in the bone surrounding the screw implant is obtained and compared for different screw configurations. The submodel analyses are further compared to and validated with simple axial experimental and numerical screw pull-out models. Results of the screw FE analysis (FEA) submodel show that a unicortical screw of 2.6 mm major diameter and 1.0 mm pitch will cause less bone damage than a bicortical screw of 2.3 mm major diameter and 1.0 mm pitch. The results of this study suggest that bicortical drilling can be avoided by using screws of a larger major diameter.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5591 |
ispartof | Modelling and simulation in engineering, 2008, Vol.2008 (2008), p.1-11 |
issn | 1687-5591 1687-5605 |
language | eng |
recordid | cdi_emarefa_primary_486349 |
source | Wiley Online Library; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Numerical%20Modeling%20of%20Screws%20Used%20for%20Rigid%20Internal%20Fixation%20of%20Mandibular%20Fractures&rft.jtitle=Modelling%20and%20simulation%20in%20engineering&rft.au=Chaudhary,%20Naresh&rft.date=2008&rft.volume=2008&rft.issue=2008&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1687-5591&rft.eissn=1687-5605&rft_id=info:doi/&rft_dat=%3Cemarefa%3E486349%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |