Positive Solutions for Multipoint Boundary Value Problem of Fractional Differential Equations

We study the existence and multiplicity of positive solutions for the fractional m-point boundary value problem D0+αu(t)+f(t,u(t))=0, 0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and applied analysis 2011, Vol.2010 (2010), p.1-15
1. Verfasser: Zhong, Wenyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2010
container_start_page 1
container_title Abstract and applied analysis
container_volume 2010
creator Zhong, Wenyong
description We study the existence and multiplicity of positive solutions for the fractional m-point boundary value problem D0+αu(t)+f(t,u(t))=0, 0
format Article
fullrecord <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_484100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>484100</sourcerecordid><originalsourceid>FETCH-emarefa_primary_4841003</originalsourceid><addsrcrecordid>eNqFjssKwjAURIMoWB-fINwfKESa2rpVW9wIBcWdlKg3EEmbmofQvzeKe1dzhmGGGZBoucqzmDK6HgameRonSZaOycTaB6U0yRiLyKXSVjr5Qjhq5Z3UrQWhDRy8crLTsnWw0b69c9PDmSuPUBl9VdiAFlAafvtUuIKdFAINtk4GUzw9_07NyEhwZXH-0ylZlMVpu4-x4QYFrzsjA_U1y9kyXPqXvwFEmUHU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Positive Solutions for Multipoint Boundary Value Problem of Fractional Differential Equations</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhong, Wenyong</creator><creatorcontrib>Zhong, Wenyong</creatorcontrib><description><![CDATA[We study the existence and multiplicity of positive solutions for the fractional m-point boundary value problem D0+αu(t)+f(t,u(t))=0, 0<t<1, u(0)=u'(0)=0, u'(1)=∑i=1m-2aiu'(ξi), where 2<α<3, D0+α is the standard Riemann-Liouville fractional derivative, and f:[0,1]×[0,∞)↦[0,∞) is continuous. Here, ai⩾0 for i=1,…,m-2, 0<ξ1<ξ2<⋯<ξm-2<1, and ρ=∑i=1m-2aiξiα-2 with ρ<1. In light of some fixed point theorems, some existence and multiplicity results of positive solutions are obtained.]]></description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Abstract and applied analysis, 2011, Vol.2010 (2010), p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Zhong, Wenyong</creatorcontrib><title>Positive Solutions for Multipoint Boundary Value Problem of Fractional Differential Equations</title><title>Abstract and applied analysis</title><description><![CDATA[We study the existence and multiplicity of positive solutions for the fractional m-point boundary value problem D0+αu(t)+f(t,u(t))=0, 0<t<1, u(0)=u'(0)=0, u'(1)=∑i=1m-2aiu'(ξi), where 2<α<3, D0+α is the standard Riemann-Liouville fractional derivative, and f:[0,1]×[0,∞)↦[0,∞) is continuous. Here, ai⩾0 for i=1,…,m-2, 0<ξ1<ξ2<⋯<ξm-2<1, and ρ=∑i=1m-2aiξiα-2 with ρ<1. In light of some fixed point theorems, some existence and multiplicity results of positive solutions are obtained.]]></description><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFjssKwjAURIMoWB-fINwfKESa2rpVW9wIBcWdlKg3EEmbmofQvzeKe1dzhmGGGZBoucqzmDK6HgameRonSZaOycTaB6U0yRiLyKXSVjr5Qjhq5Z3UrQWhDRy8crLTsnWw0b69c9PDmSuPUBl9VdiAFlAafvtUuIKdFAINtk4GUzw9_07NyEhwZXH-0ylZlMVpu4-x4QYFrzsjA_U1y9kyXPqXvwFEmUHU</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Zhong, Wenyong</creator><general>Hindawi Puplishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope></search><sort><creationdate>2011</creationdate><title>Positive Solutions for Multipoint Boundary Value Problem of Fractional Differential Equations</title><author>Zhong, Wenyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_4841003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Wenyong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><jtitle>Abstract and applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Wenyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive Solutions for Multipoint Boundary Value Problem of Fractional Differential Equations</atitle><jtitle>Abstract and applied analysis</jtitle><date>2011</date><risdate>2011</risdate><volume>2010</volume><issue>2010</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract><![CDATA[We study the existence and multiplicity of positive solutions for the fractional m-point boundary value problem D0+αu(t)+f(t,u(t))=0, 0<t<1, u(0)=u'(0)=0, u'(1)=∑i=1m-2aiu'(ξi), where 2<α<3, D0+α is the standard Riemann-Liouville fractional derivative, and f:[0,1]×[0,∞)↦[0,∞) is continuous. Here, ai⩾0 for i=1,…,m-2, 0<ξ1<ξ2<⋯<ξm-2<1, and ρ=∑i=1m-2aiξiα-2 with ρ<1. In light of some fixed point theorems, some existence and multiplicity results of positive solutions are obtained.]]></abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and applied analysis, 2011, Vol.2010 (2010), p.1-15
issn 1085-3375
1687-0409
language eng
recordid cdi_emarefa_primary_484100
source DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Positive Solutions for Multipoint Boundary Value Problem of Fractional Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20Solutions%20for%20Multipoint%20Boundary%20Value%20Problem%20of%20Fractional%20Differential%20Equations&rft.jtitle=Abstract%20and%20applied%20analysis&rft.au=Zhong,%20Wenyong&rft.date=2011&rft.volume=2010&rft.issue=2010&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/&rft_dat=%3Cemarefa%3E484100%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true