Heat Transport in Nanoscale Heterosystems : A Numerical and Analytical Study
The numerical integration of the heat diffusion equation applied to the Bi/Si-heterosystem is presented for times larger than the characteristic time of electron-phonon coupling. By comparing the numerical results to experimental data, it is shown that the thermal boundary resistance of the interfac...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2008, Vol.2008 (2008), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2008 |
container_start_page | 1 |
container_title | Journal of nanomaterials |
container_volume | 2008 |
creator | Krenzer, Boris Hanisch, Anja Duvenbeck, Andreas Rethfeld, Bärbel Hoegen, Michael Horn-von |
description | The numerical integration of the heat diffusion equation applied to the Bi/Si-heterosystem is presented for times larger than the characteristic time of electron-phonon coupling. By comparing the numerical results to experimental data, it is shown that the thermal boundary resistance of the interface can be directly determined from the characteristic decay time of the observed surface cooling, and an elaborate simulation of the temporal surface temperature evolution can be omitted. Additionally, the numerical solution shows that the substrate temperature only negligibly varies with time and can be considered constant. In this case, an analytical solution can be found. A thorough examination of the analytical solution shows that the surface cooling behavior strongly depends on the initial temperature distribution which can be used to study energy transport properties at short delays after the excitation. |
format | Article |
fullrecord | <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_483255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>483255</sourcerecordid><originalsourceid>FETCH-emarefa_primary_4832553</originalsourceid><addsrcrecordid>eNqFicsKgkAUQIcoyB6fENwfEHR0SttJFC7CTe7lklcwdJS542L-Polo2-qcw1kILzwmJz8OZbr8eRisxYb5FQSxSpX0xD0ntFAa1DwOxkKroUA98BM7gpwsmYEdW-oZzpBBMfVk2nkC6hoyjZ2zn3zYqXY7sWqwY9p_uRWH27W85D71aKjBajTtbK6Kk0gqFf37byp5OnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat Transport in Nanoscale Heterosystems : A Numerical and Analytical Study</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Krenzer, Boris ; Hanisch, Anja ; Duvenbeck, Andreas ; Rethfeld, Bärbel ; Hoegen, Michael Horn-von</creator><creatorcontrib>Krenzer, Boris ; Hanisch, Anja ; Duvenbeck, Andreas ; Rethfeld, Bärbel ; Hoegen, Michael Horn-von</creatorcontrib><description>The numerical integration of the heat diffusion equation applied to the Bi/Si-heterosystem is presented for times larger than the characteristic time of electron-phonon coupling. By comparing the numerical results to experimental data, it is shown that the thermal boundary resistance of the interface can be directly determined from the characteristic decay time of the observed surface cooling, and an elaborate simulation of the temporal surface temperature evolution can be omitted. Additionally, the numerical solution shows that the substrate temperature only negligibly varies with time and can be considered constant. In this case, an analytical solution can be found. A thorough examination of the analytical solution shows that the surface cooling behavior strongly depends on the initial temperature distribution which can be used to study energy transport properties at short delays after the excitation.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Journal of nanomaterials, 2008, Vol.2008 (2008), p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Krenzer, Boris</creatorcontrib><creatorcontrib>Hanisch, Anja</creatorcontrib><creatorcontrib>Duvenbeck, Andreas</creatorcontrib><creatorcontrib>Rethfeld, Bärbel</creatorcontrib><creatorcontrib>Hoegen, Michael Horn-von</creatorcontrib><title>Heat Transport in Nanoscale Heterosystems : A Numerical and Analytical Study</title><title>Journal of nanomaterials</title><description>The numerical integration of the heat diffusion equation applied to the Bi/Si-heterosystem is presented for times larger than the characteristic time of electron-phonon coupling. By comparing the numerical results to experimental data, it is shown that the thermal boundary resistance of the interface can be directly determined from the characteristic decay time of the observed surface cooling, and an elaborate simulation of the temporal surface temperature evolution can be omitted. Additionally, the numerical solution shows that the substrate temperature only negligibly varies with time and can be considered constant. In this case, an analytical solution can be found. A thorough examination of the analytical solution shows that the surface cooling behavior strongly depends on the initial temperature distribution which can be used to study energy transport properties at short delays after the excitation.</description><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFicsKgkAUQIcoyB6fENwfEHR0SttJFC7CTe7lklcwdJS542L-Polo2-qcw1kILzwmJz8OZbr8eRisxYb5FQSxSpX0xD0ntFAa1DwOxkKroUA98BM7gpwsmYEdW-oZzpBBMfVk2nkC6hoyjZ2zn3zYqXY7sWqwY9p_uRWH27W85D71aKjBajTtbK6Kk0gqFf37byp5OnA</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Krenzer, Boris</creator><creator>Hanisch, Anja</creator><creator>Duvenbeck, Andreas</creator><creator>Rethfeld, Bärbel</creator><creator>Hoegen, Michael Horn-von</creator><general>Hindawi Puplishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope></search><sort><creationdate>2008</creationdate><title>Heat Transport in Nanoscale Heterosystems : A Numerical and Analytical Study</title><author>Krenzer, Boris ; Hanisch, Anja ; Duvenbeck, Andreas ; Rethfeld, Bärbel ; Hoegen, Michael Horn-von</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_4832553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krenzer, Boris</creatorcontrib><creatorcontrib>Hanisch, Anja</creatorcontrib><creatorcontrib>Duvenbeck, Andreas</creatorcontrib><creatorcontrib>Rethfeld, Bärbel</creatorcontrib><creatorcontrib>Hoegen, Michael Horn-von</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krenzer, Boris</au><au>Hanisch, Anja</au><au>Duvenbeck, Andreas</au><au>Rethfeld, Bärbel</au><au>Hoegen, Michael Horn-von</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transport in Nanoscale Heterosystems : A Numerical and Analytical Study</atitle><jtitle>Journal of nanomaterials</jtitle><date>2008</date><risdate>2008</risdate><volume>2008</volume><issue>2008</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>The numerical integration of the heat diffusion equation applied to the Bi/Si-heterosystem is presented for times larger than the characteristic time of electron-phonon coupling. By comparing the numerical results to experimental data, it is shown that the thermal boundary resistance of the interface can be directly determined from the characteristic decay time of the observed surface cooling, and an elaborate simulation of the temporal surface temperature evolution can be omitted. Additionally, the numerical solution shows that the substrate temperature only negligibly varies with time and can be considered constant. In this case, an analytical solution can be found. A thorough examination of the analytical solution shows that the surface cooling behavior strongly depends on the initial temperature distribution which can be used to study energy transport properties at short delays after the excitation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2008, Vol.2008 (2008), p.1-10 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_emarefa_primary_483255 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
title | Heat Transport in Nanoscale Heterosystems : A Numerical and Analytical Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transport%20in%20Nanoscale%20Heterosystems%20:%20A%20Numerical%20and%20Analytical%20Study&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Krenzer,%20Boris&rft.date=2008&rft.volume=2008&rft.issue=2008&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/&rft_dat=%3Cemarefa%3E483255%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |