First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries
We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symme...
Gespeichert in:
Veröffentlicht in: | Abstract and applied analysis 2013, Vol.2013 (2013), p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Abstract and applied analysis |
container_volume | 2013 |
creator | Gün Polat, Gülden Özer, Teoman |
description | We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate λ-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of λ-symmetries. Finally, we compare the results obtained from different classifications. |
format | Article |
fullrecord | <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_460295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>460295</sourcerecordid><originalsourceid>FETCH-emarefa_primary_4602953</originalsourceid><addsrcrecordid>eNqFjUsKAjEQRIMo-D2C0AdwIDo_3SoOuhFB99JojxNxEk16BM_mHTyTUXTtqh71KKomWsNknAYykpO6ZzmOgzBM46ZoO3eSUoZpFLVElSnrGJaa6Wjx7AY_ZKWPkOGejfUl6oMXN7QKNcPGnCtWRjswOXBBsEYuYH6t8N3CFB0dwMPKkLf2s34-gs29LImtItcVjdyfUe-bHdHP5tvZIqASLeW4u1jl6b6LEjmaxOE__wLwC0oq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Gün Polat, Gülden ; Özer, Teoman</creator><creatorcontrib>Gün Polat, Gülden ; Özer, Teoman</creatorcontrib><description>We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate λ-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of λ-symmetries. Finally, we compare the results obtained from different classifications.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Abstract and applied analysis, 2013, Vol.2013 (2013), p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Gün Polat, Gülden</creatorcontrib><creatorcontrib>Özer, Teoman</creatorcontrib><title>First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries</title><title>Abstract and applied analysis</title><description>We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate λ-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of λ-symmetries. Finally, we compare the results obtained from different classifications.</description><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFjUsKAjEQRIMo-D2C0AdwIDo_3SoOuhFB99JojxNxEk16BM_mHTyTUXTtqh71KKomWsNknAYykpO6ZzmOgzBM46ZoO3eSUoZpFLVElSnrGJaa6Wjx7AY_ZKWPkOGejfUl6oMXN7QKNcPGnCtWRjswOXBBsEYuYH6t8N3CFB0dwMPKkLf2s34-gs29LImtItcVjdyfUe-bHdHP5tvZIqASLeW4u1jl6b6LEjmaxOE__wLwC0oq</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Gün Polat, Gülden</creator><creator>Özer, Teoman</creator><general>Hindawi Puplishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope></search><sort><creationdate>2013</creationdate><title>First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries</title><author>Gün Polat, Gülden ; Özer, Teoman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_4602953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gün Polat, Gülden</creatorcontrib><creatorcontrib>Özer, Teoman</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><jtitle>Abstract and applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gün Polat, Gülden</au><au>Özer, Teoman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries</atitle><jtitle>Abstract and applied analysis</jtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate λ-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of λ-symmetries. Finally, we compare the results obtained from different classifications.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and applied analysis, 2013, Vol.2013 (2013), p.1-15 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_emarefa_primary_460295 |
source | Open Access: Wiley-Blackwell Open Access Journals; DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
title | First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Integrals,%20Integrating%20Factors,%20and%20Invariant%20Solutions%20of%20the%20Path%20Equation%20Based%20on%20Noether%20and%20%CE%BB-Symmetries&rft.jtitle=Abstract%20and%20applied%20analysis&rft.au=G%C3%BCn%20Polat,%20G%C3%BClden&rft.date=2013&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/&rft_dat=%3Cemarefa%3E460295%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |