First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries

We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and applied analysis 2013, Vol.2013 (2013), p.1-15
Hauptverfasser: Gün Polat, Gülden, Özer, Teoman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2013
container_start_page 1
container_title Abstract and applied analysis
container_volume 2013
creator Gün Polat, Gülden
Özer, Teoman
description We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate λ-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of λ-symmetries. Finally, we compare the results obtained from different classifications.
format Article
fullrecord <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_460295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>460295</sourcerecordid><originalsourceid>FETCH-emarefa_primary_4602953</originalsourceid><addsrcrecordid>eNqFjUsKAjEQRIMo-D2C0AdwIDo_3SoOuhFB99JojxNxEk16BM_mHTyTUXTtqh71KKomWsNknAYykpO6ZzmOgzBM46ZoO3eSUoZpFLVElSnrGJaa6Wjx7AY_ZKWPkOGejfUl6oMXN7QKNcPGnCtWRjswOXBBsEYuYH6t8N3CFB0dwMPKkLf2s34-gs29LImtItcVjdyfUe-bHdHP5tvZIqASLeW4u1jl6b6LEjmaxOE__wLwC0oq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Gün Polat, Gülden ; Özer, Teoman</creator><creatorcontrib>Gün Polat, Gülden ; Özer, Teoman</creatorcontrib><description>We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate λ-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of λ-symmetries. Finally, we compare the results obtained from different classifications.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><ispartof>Abstract and applied analysis, 2013, Vol.2013 (2013), p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Gün Polat, Gülden</creatorcontrib><creatorcontrib>Özer, Teoman</creatorcontrib><title>First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries</title><title>Abstract and applied analysis</title><description>We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate λ-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of λ-symmetries. Finally, we compare the results obtained from different classifications.</description><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFjUsKAjEQRIMo-D2C0AdwIDo_3SoOuhFB99JojxNxEk16BM_mHTyTUXTtqh71KKomWsNknAYykpO6ZzmOgzBM46ZoO3eSUoZpFLVElSnrGJaa6Wjx7AY_ZKWPkOGejfUl6oMXN7QKNcPGnCtWRjswOXBBsEYuYH6t8N3CFB0dwMPKkLf2s34-gs29LImtItcVjdyfUe-bHdHP5tvZIqASLeW4u1jl6b6LEjmaxOE__wLwC0oq</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Gün Polat, Gülden</creator><creator>Özer, Teoman</creator><general>Hindawi Puplishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope></search><sort><creationdate>2013</creationdate><title>First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries</title><author>Gün Polat, Gülden ; Özer, Teoman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_4602953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gün Polat, Gülden</creatorcontrib><creatorcontrib>Özer, Teoman</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><jtitle>Abstract and applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gün Polat, Gülden</au><au>Özer, Teoman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries</atitle><jtitle>Abstract and applied analysis</jtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We analyze Noether and λ-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate λ-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of λ-symmetries. Finally, we compare the results obtained from different classifications.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and applied analysis, 2013, Vol.2013 (2013), p.1-15
issn 1085-3375
1687-0409
language eng
recordid cdi_emarefa_primary_460295
source Open Access: Wiley-Blackwell Open Access Journals; DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
title First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and λ-Symmetries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Integrals,%20Integrating%20Factors,%20and%20Invariant%20Solutions%20of%20the%20Path%20Equation%20Based%20on%20Noether%20and%20%CE%BB-Symmetries&rft.jtitle=Abstract%20and%20applied%20analysis&rft.au=G%C3%BCn%20Polat,%20G%C3%BClden&rft.date=2013&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/&rft_dat=%3Cemarefa%3E460295%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true