Energy-efficient resource allocation for cognitive radio networks: a genetic algorithm approach
Cognitive radio networks, where secondary users opportunistically share spectrum resources with prime users to improve spectrum utilization, energy-efficient resource allocation is a critical concern. In order to solve the optimization problem of optimizing network lifetime while satisfying energy l...
Gespeichert in:
Veröffentlicht in: | Menoufia Journal of Electronic Engineering Research 2024-06, Vol.33 (2), p.32-39 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 2 |
container_start_page | 32 |
container_title | Menoufia Journal of Electronic Engineering Research |
container_volume | 33 |
creator | Zayd, Yasamin Shuqayr, Muna Abd al-Ati, Said Sad al-Din, Walid |
description | Cognitive radio networks, where secondary users opportunistically share spectrum resources with prime users to improve spectrum utilization, energy-efficient resource allocation is a critical concern. In order to solve the optimization problem of optimizing network lifetime while satisfying energy limitations for both primary and secondary users, a genetic algorithm-based method is presented in this paper. The network consists of a time division multiple access (TDMA) frame with a variable number of time slots, a primary user base station, a secondary user base station, primary users, and secondary users. The effectiveness of the genetic algorithm in identifying solutions that strike a balance between energy consumption and energy harvesting, improving network lifetime, is demonstrated by simulation results. Additionally, the study explores the effects of altering the number of primary and secondary users, as well as time slots, on the optimization process. |
doi_str_mv | 10.21608/mjeer.2024.251264.1087 |
format | Article |
fullrecord | <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_emarefa_primary_1618489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1618489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c719-7e485eeb1cdee4b2507d63638a499890df8e1fbff0212241e9d496f47a3f207f3</originalsourceid><addsrcrecordid>eNpF0NtKAzEQgOEgCpbaV9C8wK45bQ7eSakHKHjT-5BmJ9vUdlOSVenbu20Fr4aB-efiQ-iBkppRSfTjfguQa0aYqFlDmRQ1JVpdoQmTmlW84c01mlCpVUWpNrdoVsqWEMIMawSRE2QXPeTuWEEI0UfoB5yhpK_sAbvdLnk3xNTjkDL2qevjEL8BZ9fGhHsYflL-LE_Y4Q7GLfox6VKOw2aP3eGQk_ObO3QT3K7A7G9O0eplsZq_VcuP1_f587LyippKgdANwJr6FkCsWUNUK7nk2gljtCFt0EDDOgTCKGOCgmmFkUEoxwMjKvApUpe3PqdSMgR7yHHv8tFSYs9S9ixlT1L2ImVPUmN5fylhPIfg_kNJtdCG_wJwG2mt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy-efficient resource allocation for cognitive radio networks: a genetic algorithm approach</title><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Zayd, Yasamin ; Shuqayr, Muna ; Abd al-Ati, Said ; Sad al-Din, Walid</creator><creatorcontrib>Zayd, Yasamin ; Shuqayr, Muna ; Abd al-Ati, Said ; Sad al-Din, Walid</creatorcontrib><description>Cognitive radio networks, where secondary users opportunistically share spectrum resources with prime users to improve spectrum utilization, energy-efficient resource allocation is a critical concern. In order to solve the optimization problem of optimizing network lifetime while satisfying energy limitations for both primary and secondary users, a genetic algorithm-based method is presented in this paper. The network consists of a time division multiple access (TDMA) frame with a variable number of time slots, a primary user base station, a secondary user base station, primary users, and secondary users. The effectiveness of the genetic algorithm in identifying solutions that strike a balance between energy consumption and energy harvesting, improving network lifetime, is demonstrated by simulation results. Additionally, the study explores the effects of altering the number of primary and secondary users, as well as time slots, on the optimization process.</description><identifier>ISSN: 1687-1189</identifier><identifier>ISSN: 2682-3535</identifier><identifier>EISSN: 2682-3535</identifier><identifier>DOI: 10.21608/mjeer.2024.251264.1087</identifier><language>eng</language><publisher>Minuf, Egypt: Menoufia University, Faculty of Electronic Engineering</publisher><ispartof>Menoufia Journal of Electronic Engineering Research, 2024-06, Vol.33 (2), p.32-39</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Zayd, Yasamin</creatorcontrib><creatorcontrib>Shuqayr, Muna</creatorcontrib><creatorcontrib>Abd al-Ati, Said</creatorcontrib><creatorcontrib>Sad al-Din, Walid</creatorcontrib><title>Energy-efficient resource allocation for cognitive radio networks: a genetic algorithm approach</title><title>Menoufia Journal of Electronic Engineering Research</title><description>Cognitive radio networks, where secondary users opportunistically share spectrum resources with prime users to improve spectrum utilization, energy-efficient resource allocation is a critical concern. In order to solve the optimization problem of optimizing network lifetime while satisfying energy limitations for both primary and secondary users, a genetic algorithm-based method is presented in this paper. The network consists of a time division multiple access (TDMA) frame with a variable number of time slots, a primary user base station, a secondary user base station, primary users, and secondary users. The effectiveness of the genetic algorithm in identifying solutions that strike a balance between energy consumption and energy harvesting, improving network lifetime, is demonstrated by simulation results. Additionally, the study explores the effects of altering the number of primary and secondary users, as well as time slots, on the optimization process.</description><issn>1687-1189</issn><issn>2682-3535</issn><issn>2682-3535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0NtKAzEQgOEgCpbaV9C8wK45bQ7eSakHKHjT-5BmJ9vUdlOSVenbu20Fr4aB-efiQ-iBkppRSfTjfguQa0aYqFlDmRQ1JVpdoQmTmlW84c01mlCpVUWpNrdoVsqWEMIMawSRE2QXPeTuWEEI0UfoB5yhpK_sAbvdLnk3xNTjkDL2qevjEL8BZ9fGhHsYflL-LE_Y4Q7GLfox6VKOw2aP3eGQk_ObO3QT3K7A7G9O0eplsZq_VcuP1_f587LyippKgdANwJr6FkCsWUNUK7nk2gljtCFt0EDDOgTCKGOCgmmFkUEoxwMjKvApUpe3PqdSMgR7yHHv8tFSYs9S9ixlT1L2ImVPUmN5fylhPIfg_kNJtdCG_wJwG2mt</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>Zayd, Yasamin</creator><creator>Shuqayr, Muna</creator><creator>Abd al-Ati, Said</creator><creator>Sad al-Din, Walid</creator><general>Menoufia University, Faculty of Electronic Engineering</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240625</creationdate><title>Energy-efficient resource allocation for cognitive radio networks: a genetic algorithm approach</title><author>Zayd, Yasamin ; Shuqayr, Muna ; Abd al-Ati, Said ; Sad al-Din, Walid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c719-7e485eeb1cdee4b2507d63638a499890df8e1fbff0212241e9d496f47a3f207f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zayd, Yasamin</creatorcontrib><creatorcontrib>Shuqayr, Muna</creatorcontrib><creatorcontrib>Abd al-Ati, Said</creatorcontrib><creatorcontrib>Sad al-Din, Walid</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>CrossRef</collection><jtitle>Menoufia Journal of Electronic Engineering Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zayd, Yasamin</au><au>Shuqayr, Muna</au><au>Abd al-Ati, Said</au><au>Sad al-Din, Walid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-efficient resource allocation for cognitive radio networks: a genetic algorithm approach</atitle><jtitle>Menoufia Journal of Electronic Engineering Research</jtitle><date>2024-06-25</date><risdate>2024</risdate><volume>33</volume><issue>2</issue><spage>32</spage><epage>39</epage><pages>32-39</pages><issn>1687-1189</issn><issn>2682-3535</issn><eissn>2682-3535</eissn><abstract>Cognitive radio networks, where secondary users opportunistically share spectrum resources with prime users to improve spectrum utilization, energy-efficient resource allocation is a critical concern. In order to solve the optimization problem of optimizing network lifetime while satisfying energy limitations for both primary and secondary users, a genetic algorithm-based method is presented in this paper. The network consists of a time division multiple access (TDMA) frame with a variable number of time slots, a primary user base station, a secondary user base station, primary users, and secondary users. The effectiveness of the genetic algorithm in identifying solutions that strike a balance between energy consumption and energy harvesting, improving network lifetime, is demonstrated by simulation results. Additionally, the study explores the effects of altering the number of primary and secondary users, as well as time slots, on the optimization process.</abstract><cop>Minuf, Egypt</cop><pub>Menoufia University, Faculty of Electronic Engineering</pub><doi>10.21608/mjeer.2024.251264.1087</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1189 |
ispartof | Menoufia Journal of Electronic Engineering Research, 2024-06, Vol.33 (2), p.32-39 |
issn | 1687-1189 2682-3535 2682-3535 |
language | eng |
recordid | cdi_emarefa_primary_1618489 |
source | DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
title | Energy-efficient resource allocation for cognitive radio networks: a genetic algorithm approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-efficient%20resource%20allocation%20for%20cognitive%20radio%20networks:%20a%20genetic%20algorithm%20approach&rft.jtitle=Menoufia%20Journal%20of%20Electronic%20Engineering%20Research&rft.au=Zayd,%20Yasamin&rft.date=2024-06-25&rft.volume=33&rft.issue=2&rft.spage=32&rft.epage=39&rft.pages=32-39&rft.issn=1687-1189&rft.eissn=2682-3535&rft_id=info:doi/10.21608/mjeer.2024.251264.1087&rft_dat=%3Cemarefa_cross%3E1618489%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |