Improved vector quantization approach for discrete HMM speech recognition system

The paper presents an improved Vector Quantization (VQ) approach for discrete Hidden Markov Models (HMMs). This improved VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique, that we named the Distributed Vector Quantization (DVQ) of hidden Markov mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International arab journal of information technology 2007, Vol.4 (4), p.338-344
Hauptverfasser: Debyeche, Muhammad, Paul Haton, jean, Houacine, Amrane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 4
container_start_page 338
container_title International arab journal of information technology
container_volume 4
creator Debyeche, Muhammad
Paul Haton, jean
Houacine, Amrane
description The paper presents an improved Vector Quantization (VQ) approach for discrete Hidden Markov Models (HMMs). This improved VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique, that we named the Distributed Vector Quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants ; the first variant uses the K-means algorithm (K-means-DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of Neural Networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system while maintaining the decoding speed of the models.
format Article
fullrecord <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_11725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11725</sourcerecordid><originalsourceid>FETCH-emarefa_primary_117253</originalsourceid><addsrcrecordid>eNpjYuA0NLMw1jU2tLRgQWJzMPAWF2cZAIGxpZGZuTknQ4BnbkFRfllqikJZanJJfpFCYWliXklmVWJJZn6eQmIBUDIxOUMhDSiTklmcXJRakqrg4eurUFyQmgoUL0pNzk_PywQrLq4sLknN5WFgTUvMKU7lhdLcDDJuriHOHrqpuYlFqWmJ8QVFmUBWZbyhobmRqTEBaQDawj1q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved vector quantization approach for discrete HMM speech recognition system</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Debyeche, Muhammad ; Paul Haton, jean ; Houacine, Amrane</creator><creatorcontrib>Debyeche, Muhammad ; Paul Haton, jean ; Houacine, Amrane</creatorcontrib><description>The paper presents an improved Vector Quantization (VQ) approach for discrete Hidden Markov Models (HMMs). This improved VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique, that we named the Distributed Vector Quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants ; the first variant uses the K-means algorithm (K-means-DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of Neural Networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system while maintaining the decoding speed of the models.</description><identifier>ISSN: 1683-3198</identifier><identifier>EISSN: 1683-3198</identifier><language>eng</language><publisher>Zarqa, Jordan: Zarqa University</publisher><subject>Arabic language ; Automatic speech recognition ; Data processing ; Discrete-time systems ; Markov processes ; اللغة العربية ; معالجة البيانات</subject><ispartof>International arab journal of information technology, 2007, Vol.4 (4), p.338-344</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Debyeche, Muhammad</creatorcontrib><creatorcontrib>Paul Haton, jean</creatorcontrib><creatorcontrib>Houacine, Amrane</creatorcontrib><title>Improved vector quantization approach for discrete HMM speech recognition system</title><title>International arab journal of information technology</title><description>The paper presents an improved Vector Quantization (VQ) approach for discrete Hidden Markov Models (HMMs). This improved VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique, that we named the Distributed Vector Quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants ; the first variant uses the K-means algorithm (K-means-DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of Neural Networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system while maintaining the decoding speed of the models.</description><subject>Arabic language</subject><subject>Automatic speech recognition</subject><subject>Data processing</subject><subject>Discrete-time systems</subject><subject>Markov processes</subject><subject>اللغة العربية</subject><subject>معالجة البيانات</subject><issn>1683-3198</issn><issn>1683-3198</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NLMw1jU2tLRgQWJzMPAWF2cZAIGxpZGZuTknQ4BnbkFRfllqikJZanJJfpFCYWliXklmVWJJZn6eQmIBUDIxOUMhDSiTklmcXJRakqrg4eurUFyQmgoUL0pNzk_PywQrLq4sLknN5WFgTUvMKU7lhdLcDDJuriHOHrqpuYlFqWmJ8QVFmUBWZbyhobmRqTEBaQDawj1q</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Debyeche, Muhammad</creator><creator>Paul Haton, jean</creator><creator>Houacine, Amrane</creator><general>Zarqa University</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>ALPBV</scope></search><sort><creationdate>2007</creationdate><title>Improved vector quantization approach for discrete HMM speech recognition system</title><author>Debyeche, Muhammad ; Paul Haton, jean ; Houacine, Amrane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_117253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Arabic language</topic><topic>Automatic speech recognition</topic><topic>Data processing</topic><topic>Discrete-time systems</topic><topic>Markov processes</topic><topic>اللغة العربية</topic><topic>معالجة البيانات</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debyeche, Muhammad</creatorcontrib><creatorcontrib>Paul Haton, jean</creatorcontrib><creatorcontrib>Houacine, Amrane</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة الدراسات الإسلامية واللغة العربية - e-Marefa Islamic Studies and the Arabic Literature</collection><jtitle>International arab journal of information technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debyeche, Muhammad</au><au>Paul Haton, jean</au><au>Houacine, Amrane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved vector quantization approach for discrete HMM speech recognition system</atitle><jtitle>International arab journal of information technology</jtitle><date>2007</date><risdate>2007</risdate><volume>4</volume><issue>4</issue><spage>338</spage><epage>344</epage><pages>338-344</pages><issn>1683-3198</issn><eissn>1683-3198</eissn><abstract>The paper presents an improved Vector Quantization (VQ) approach for discrete Hidden Markov Models (HMMs). This improved VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique, that we named the Distributed Vector Quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants ; the first variant uses the K-means algorithm (K-means-DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of Neural Networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system while maintaining the decoding speed of the models.</abstract><cop>Zarqa, Jordan</cop><pub>Zarqa University</pub><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1683-3198
ispartof International arab journal of information technology, 2007, Vol.4 (4), p.338-344
issn 1683-3198
1683-3198
language eng
recordid cdi_emarefa_primary_11725
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabic language
Automatic speech recognition
Data processing
Discrete-time systems
Markov processes
اللغة العربية
معالجة البيانات
title Improved vector quantization approach for discrete HMM speech recognition system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20vector%20quantization%20approach%20for%20discrete%20HMM%20speech%20recognition%20system&rft.jtitle=International%20arab%20journal%20of%20information%20technology&rft.au=Debyeche,%20Muhammad&rft.date=2007&rft.volume=4&rft.issue=4&rft.spage=338&rft.epage=344&rft.pages=338-344&rft.issn=1683-3198&rft.eissn=1683-3198&rft_id=info:doi/&rft_dat=%3Cemarefa%3E11725%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true