Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data
Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic inter...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2015, Vol.2015 (2015), p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2015 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2015 |
creator | Wang, Yishu Deng, Minghua Yang, Dejie |
description | Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted. |
doi_str_mv | 10.1155/2015/573956 |
format | Article |
fullrecord | <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_1055965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1055965</sourcerecordid><originalsourceid>FETCH-emarefa_primary_10559653</originalsourceid><addsrcrecordid>eNqFir0KwjAURoMoWNTJXfICtbmmiXa2_oEu6l4uNYWoTUoSUN_eIuLqWb7DxyFkDGwKIEQyYyASMeeZkB0SzTiksYQUuj_nvE9G3l9ZywIky2RE8r19xEc0N4rmQk8NOq_oAYPTT5qr0taN9Tpoa2hlHd0oo4IudyYoh-XnzjHgkPQqvHs1-u6ATNar83IbqxqdqrBonG7tVQATIpOC_w3eHHU8iA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data</title><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Yishu ; Deng, Minghua ; Yang, Dejie</creator><creatorcontrib>Wang, Yishu ; Deng, Minghua ; Yang, Dejie</creatorcontrib><description>Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2015/573956</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><ispartof>BioMed research international, 2015, Vol.2015 (2015), p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yishu</creatorcontrib><creatorcontrib>Deng, Minghua</creatorcontrib><creatorcontrib>Yang, Dejie</creatorcontrib><title>Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data</title><title>BioMed research international</title><description>Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.</description><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFir0KwjAURoMoWNTJXfICtbmmiXa2_oEu6l4uNYWoTUoSUN_eIuLqWb7DxyFkDGwKIEQyYyASMeeZkB0SzTiksYQUuj_nvE9G3l9ZywIky2RE8r19xEc0N4rmQk8NOq_oAYPTT5qr0taN9Tpoa2hlHd0oo4IudyYoh-XnzjHgkPQqvHs1-u6ATNar83IbqxqdqrBonG7tVQATIpOC_w3eHHU8iA</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Wang, Yishu</creator><creator>Deng, Minghua</creator><creator>Yang, Dejie</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope></search><sort><creationdate>2015</creationdate><title>Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data</title><author>Wang, Yishu ; Deng, Minghua ; Yang, Dejie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_10559653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yishu</creatorcontrib><creatorcontrib>Deng, Minghua</creatorcontrib><creatorcontrib>Yang, Dejie</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yishu</au><au>Deng, Minghua</au><au>Yang, Dejie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data</atitle><jtitle>BioMed research international</jtitle><date>2015</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/573956</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2015, Vol.2015 (2015), p.1-11 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_emarefa_primary_1055965 |
source | PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection |
title | Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T11%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Rank%20and%20Sparse%20Matrix%20Decomposition%20for%20GeneticInteraction%20Data&rft.jtitle=BioMed%20research%20international&rft.au=Wang,%20Yishu&rft.date=2015&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2015/573956&rft_dat=%3Cemarefa%3E1055965%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |