Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data

Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2015, Vol.2015 (2015), p.1-11
Hauptverfasser: Wang, Yishu, Deng, Minghua, Yang, Dejie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2015
container_start_page 1
container_title BioMed research international
container_volume 2015
creator Wang, Yishu
Deng, Minghua
Yang, Dejie
description Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.
doi_str_mv 10.1155/2015/573956
format Article
fullrecord <record><control><sourceid>emarefa</sourceid><recordid>TN_cdi_emarefa_primary_1055965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1055965</sourcerecordid><originalsourceid>FETCH-emarefa_primary_10559653</originalsourceid><addsrcrecordid>eNqFir0KwjAURoMoWNTJXfICtbmmiXa2_oEu6l4uNYWoTUoSUN_eIuLqWb7DxyFkDGwKIEQyYyASMeeZkB0SzTiksYQUuj_nvE9G3l9ZywIky2RE8r19xEc0N4rmQk8NOq_oAYPTT5qr0taN9Tpoa2hlHd0oo4IudyYoh-XnzjHgkPQqvHs1-u6ATNar83IbqxqdqrBonG7tVQATIpOC_w3eHHU8iA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data</title><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Yishu ; Deng, Minghua ; Yang, Dejie</creator><creatorcontrib>Wang, Yishu ; Deng, Minghua ; Yang, Dejie</creatorcontrib><description>Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2015/573956</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><ispartof>BioMed research international, 2015, Vol.2015 (2015), p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yishu</creatorcontrib><creatorcontrib>Deng, Minghua</creatorcontrib><creatorcontrib>Yang, Dejie</creatorcontrib><title>Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data</title><title>BioMed research international</title><description>Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.</description><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFir0KwjAURoMoWNTJXfICtbmmiXa2_oEu6l4uNYWoTUoSUN_eIuLqWb7DxyFkDGwKIEQyYyASMeeZkB0SzTiksYQUuj_nvE9G3l9ZywIky2RE8r19xEc0N4rmQk8NOq_oAYPTT5qr0taN9Tpoa2hlHd0oo4IudyYoh-XnzjHgkPQqvHs1-u6ATNar83IbqxqdqrBonG7tVQATIpOC_w3eHHU8iA</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Wang, Yishu</creator><creator>Deng, Minghua</creator><creator>Yang, Dejie</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope></search><sort><creationdate>2015</creationdate><title>Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data</title><author>Wang, Yishu ; Deng, Minghua ; Yang, Dejie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-emarefa_primary_10559653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yishu</creatorcontrib><creatorcontrib>Deng, Minghua</creatorcontrib><creatorcontrib>Yang, Dejie</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yishu</au><au>Deng, Minghua</au><au>Yang, Dejie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data</atitle><jtitle>BioMed research international</jtitle><date>2015</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/573956</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2015, Vol.2015 (2015), p.1-11
issn 2314-6133
2314-6141
language eng
recordid cdi_emarefa_primary_1055965
source PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
title Low-Rank and Sparse Matrix Decomposition for GeneticInteraction Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T11%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Rank%20and%20Sparse%20Matrix%20Decomposition%20for%20GeneticInteraction%20Data&rft.jtitle=BioMed%20research%20international&rft.au=Wang,%20Yishu&rft.date=2015&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2015/573956&rft_dat=%3Cemarefa%3E1055965%3C/emarefa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true