MicroRNAs 223-3p and 93-5p in p atients with c hronic k idney d isease b efore and a fter r enal t ransplantation

Abstract Chronic kidney disease (CKD) is associated with a multifactorial dysregulation of bone and vascular calcification and closely linked to increased cardiovascular mortality and concomitant bone disease. We aimed to investigate specific microRNA (miRNA) signatures in CKD patients to find indic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 2016
Hauptverfasser: Ulbing, M, Kirsch, A.H, Leber, B, Lemesch, S, Münzker, J, Schweighofer, N, Hofer, D, Trummer, O, Rosenkranz, AR, Müller, H, Eller, K, Stadlbauer, V, Obermayer-Pietsch, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Chronic kidney disease (CKD) is associated with a multifactorial dysregulation of bone and vascular calcification and closely linked to increased cardiovascular mortality and concomitant bone disease. We aimed to investigate specific microRNA (miRNA) signatures in CKD patients to find indicators for vascular calcification and/or bone mineralization changes during CKD and after kidney transplantation (KT). A miRNA array was used to investigate serum miRNA profiles in CKD patients, then selected miRNAs were quantified in a validation cohort comprising 73 patients in CKD stages 3 to 5, 67 CKD patients after KT, and 36 healthy controls. A spectrum of biochemical parameters including markers for kidney function, inflammation, glucose, and mineral metabolism was determined. The relative expression of miR-223-3p and miR-93-5p was down-regulated in patients with CKD stage 4 and 5 compared to healthy controls. This down-regulation disappeared after kidney transplantation even when lower glomerular filtration rates (eGFR) persisted. MiR-223-3p and miR-93-5p were associated with interleukin-6 (IL-6) and eGFR levels, and by trend with interleukin-8 (IL-8), C-peptide, hematocrit, and parathyroid hormone (PTH). This study contributes new knowledge of serum miRNA expression profiles in CKD, potentially reflecting pathophysiological changes of bone and calcification pathways associated with inflammation, vascular calcification, mineral and glucose metabolism. Identified miRNA signatures can contribute to future risk markers or future therapeutic targets in bone and kidney disease.
ISSN:8756-3282
DOI:10.1016/j.bone.2016.11.016