Determination of Trajectories for a Gliding Parachute System

The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koopersmith, Robert M, Pearson, Allan E
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Koopersmith, Robert M
Pearson, Allan E
description The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of control energy, requires the solution of a nonlinear two-point boundary value problem. However, the structure of the optimal control law is derived in terms of three unknown parameters. Nonlinear algebraic equations for these parameters involving elliptic integrals can be written, but their solution is tedious. A method for computing the parameters is developed through the numerical minimization of a terminal error function. This method requires the integration of a system of twelve differential equations at each iteration. A non-optimal guidance scheme is also given, which prescribes a given geometrical path parameterized by three constants as a trajectory.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA955162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA955162</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA9551623</originalsourceid><addsrcrecordid>eNrjZLBxSS1JLcrNzEssyczPU8hPUwgpSsxKTS7JL8pMLVZIyy9SSFRwz8lMycxLVwhILEpMzigtSVUIriwuSc3lYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4ujpampoZmRsYEpAEDESzW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Determination of Trajectories for a Gliding Parachute System</title><source>DTIC Technical Reports</source><creator>Koopersmith, Robert M ; Pearson, Allan E</creator><creatorcontrib>Koopersmith, Robert M ; Pearson, Allan E ; BROWN UNIV PROVIDENCE RI</creatorcontrib><description>The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of control energy, requires the solution of a nonlinear two-point boundary value problem. However, the structure of the optimal control law is derived in terms of three unknown parameters. Nonlinear algebraic equations for these parameters involving elliptic integrals can be written, but their solution is tedious. A method for computing the parameters is developed through the numerical minimization of a terminal error function. This method requires the integration of a system of twelve differential equations at each iteration. A non-optimal guidance scheme is also given, which prescribes a given geometrical path parameterized by three constants as a trajectory.</description><language>eng</language><subject>Aerodynamics ; AUTOMATIC ; BOUNDARIES ; CONSTANTS ; CONTROL ; CONTROL THEORY ; DESCENT TRAJECTORIES ; DETERMINATION ; DIFFERENTIAL EQUATIONS ; ELLIPSES ; ERRORS ; FUNCTIONS ; GEOMETRY ; Gliders and Parachutes ; GLIDING ; GLIDING PARACHUTES ; GUIDANCE ; Guided Missile Traj, Accuracy and Ballistics ; INTEGRALS ; Meteorology ; NONLINEAR ALGEBRAIC EQUATIONS ; NONLINEAR SYSTEMS ; OPTIMIZATION ; PARACHUTE DESCENTS ; PARACHUTES ; PATHS ; PE62203A ; Spacecraft Trajectories and Reentry ; TRAJECTORIES ; WIND ; WIND DIRECTION ; WU031</subject><creationdate>1975</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA955162$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Koopersmith, Robert M</creatorcontrib><creatorcontrib>Pearson, Allan E</creatorcontrib><creatorcontrib>BROWN UNIV PROVIDENCE RI</creatorcontrib><title>Determination of Trajectories for a Gliding Parachute System</title><description>The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of control energy, requires the solution of a nonlinear two-point boundary value problem. However, the structure of the optimal control law is derived in terms of three unknown parameters. Nonlinear algebraic equations for these parameters involving elliptic integrals can be written, but their solution is tedious. A method for computing the parameters is developed through the numerical minimization of a terminal error function. This method requires the integration of a system of twelve differential equations at each iteration. A non-optimal guidance scheme is also given, which prescribes a given geometrical path parameterized by three constants as a trajectory.</description><subject>Aerodynamics</subject><subject>AUTOMATIC</subject><subject>BOUNDARIES</subject><subject>CONSTANTS</subject><subject>CONTROL</subject><subject>CONTROL THEORY</subject><subject>DESCENT TRAJECTORIES</subject><subject>DETERMINATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELLIPSES</subject><subject>ERRORS</subject><subject>FUNCTIONS</subject><subject>GEOMETRY</subject><subject>Gliders and Parachutes</subject><subject>GLIDING</subject><subject>GLIDING PARACHUTES</subject><subject>GUIDANCE</subject><subject>Guided Missile Traj, Accuracy and Ballistics</subject><subject>INTEGRALS</subject><subject>Meteorology</subject><subject>NONLINEAR ALGEBRAIC EQUATIONS</subject><subject>NONLINEAR SYSTEMS</subject><subject>OPTIMIZATION</subject><subject>PARACHUTE DESCENTS</subject><subject>PARACHUTES</subject><subject>PATHS</subject><subject>PE62203A</subject><subject>Spacecraft Trajectories and Reentry</subject><subject>TRAJECTORIES</subject><subject>WIND</subject><subject>WIND DIRECTION</subject><subject>WU031</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1975</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLBxSS1JLcrNzEssyczPU8hPUwgpSsxKTS7JL8pMLVZIyy9SSFRwz8lMycxLVwhILEpMzigtSVUIriwuSc3lYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4ujpampoZmRsYEpAEDESzW</recordid><startdate>197504</startdate><enddate>197504</enddate><creator>Koopersmith, Robert M</creator><creator>Pearson, Allan E</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>197504</creationdate><title>Determination of Trajectories for a Gliding Parachute System</title><author>Koopersmith, Robert M ; Pearson, Allan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA9551623</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Aerodynamics</topic><topic>AUTOMATIC</topic><topic>BOUNDARIES</topic><topic>CONSTANTS</topic><topic>CONTROL</topic><topic>CONTROL THEORY</topic><topic>DESCENT TRAJECTORIES</topic><topic>DETERMINATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELLIPSES</topic><topic>ERRORS</topic><topic>FUNCTIONS</topic><topic>GEOMETRY</topic><topic>Gliders and Parachutes</topic><topic>GLIDING</topic><topic>GLIDING PARACHUTES</topic><topic>GUIDANCE</topic><topic>Guided Missile Traj, Accuracy and Ballistics</topic><topic>INTEGRALS</topic><topic>Meteorology</topic><topic>NONLINEAR ALGEBRAIC EQUATIONS</topic><topic>NONLINEAR SYSTEMS</topic><topic>OPTIMIZATION</topic><topic>PARACHUTE DESCENTS</topic><topic>PARACHUTES</topic><topic>PATHS</topic><topic>PE62203A</topic><topic>Spacecraft Trajectories and Reentry</topic><topic>TRAJECTORIES</topic><topic>WIND</topic><topic>WIND DIRECTION</topic><topic>WU031</topic><toplevel>online_resources</toplevel><creatorcontrib>Koopersmith, Robert M</creatorcontrib><creatorcontrib>Pearson, Allan E</creatorcontrib><creatorcontrib>BROWN UNIV PROVIDENCE RI</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koopersmith, Robert M</au><au>Pearson, Allan E</au><aucorp>BROWN UNIV PROVIDENCE RI</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Determination of Trajectories for a Gliding Parachute System</btitle><date>1975-04</date><risdate>1975</risdate><abstract>The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of control energy, requires the solution of a nonlinear two-point boundary value problem. However, the structure of the optimal control law is derived in terms of three unknown parameters. Nonlinear algebraic equations for these parameters involving elliptic integrals can be written, but their solution is tedious. A method for computing the parameters is developed through the numerical minimization of a terminal error function. This method requires the integration of a system of twelve differential equations at each iteration. A non-optimal guidance scheme is also given, which prescribes a given geometrical path parameterized by three constants as a trajectory.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA955162
source DTIC Technical Reports
subjects Aerodynamics
AUTOMATIC
BOUNDARIES
CONSTANTS
CONTROL
CONTROL THEORY
DESCENT TRAJECTORIES
DETERMINATION
DIFFERENTIAL EQUATIONS
ELLIPSES
ERRORS
FUNCTIONS
GEOMETRY
Gliders and Parachutes
GLIDING
GLIDING PARACHUTES
GUIDANCE
Guided Missile Traj, Accuracy and Ballistics
INTEGRALS
Meteorology
NONLINEAR ALGEBRAIC EQUATIONS
NONLINEAR SYSTEMS
OPTIMIZATION
PARACHUTE DESCENTS
PARACHUTES
PATHS
PE62203A
Spacecraft Trajectories and Reentry
TRAJECTORIES
WIND
WIND DIRECTION
WU031
title Determination of Trajectories for a Gliding Parachute System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Determination%20of%20Trajectories%20for%20a%20Gliding%20Parachute%20System&rft.au=Koopersmith,%20Robert%20M&rft.aucorp=BROWN%20UNIV%20PROVIDENCE%20RI&rft.date=1975-04&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA955162%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true