Determination of Trajectories for a Gliding Parachute System
The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of con...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Koopersmith, Robert M Pearson, Allan E |
description | The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of control energy, requires the solution of a nonlinear two-point boundary value problem. However, the structure of the optimal control law is derived in terms of three unknown parameters. Nonlinear algebraic equations for these parameters involving elliptic integrals can be written, but their solution is tedious. A method for computing the parameters is developed through the numerical minimization of a terminal error function. This method requires the integration of a system of twelve differential equations at each iteration. A non-optimal guidance scheme is also given, which prescribes a given geometrical path parameterized by three constants as a trajectory. |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA955162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA955162</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA9551623</originalsourceid><addsrcrecordid>eNrjZLBxSS1JLcrNzEssyczPU8hPUwgpSsxKTS7JL8pMLVZIyy9SSFRwz8lMycxLVwhILEpMzigtSVUIriwuSc3lYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4ujpampoZmRsYEpAEDESzW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Determination of Trajectories for a Gliding Parachute System</title><source>DTIC Technical Reports</source><creator>Koopersmith, Robert M ; Pearson, Allan E</creator><creatorcontrib>Koopersmith, Robert M ; Pearson, Allan E ; BROWN UNIV PROVIDENCE RI</creatorcontrib><description>The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of control energy, requires the solution of a nonlinear two-point boundary value problem. However, the structure of the optimal control law is derived in terms of three unknown parameters. Nonlinear algebraic equations for these parameters involving elliptic integrals can be written, but their solution is tedious. A method for computing the parameters is developed through the numerical minimization of a terminal error function. This method requires the integration of a system of twelve differential equations at each iteration. A non-optimal guidance scheme is also given, which prescribes a given geometrical path parameterized by three constants as a trajectory.</description><language>eng</language><subject>Aerodynamics ; AUTOMATIC ; BOUNDARIES ; CONSTANTS ; CONTROL ; CONTROL THEORY ; DESCENT TRAJECTORIES ; DETERMINATION ; DIFFERENTIAL EQUATIONS ; ELLIPSES ; ERRORS ; FUNCTIONS ; GEOMETRY ; Gliders and Parachutes ; GLIDING ; GLIDING PARACHUTES ; GUIDANCE ; Guided Missile Traj, Accuracy and Ballistics ; INTEGRALS ; Meteorology ; NONLINEAR ALGEBRAIC EQUATIONS ; NONLINEAR SYSTEMS ; OPTIMIZATION ; PARACHUTE DESCENTS ; PARACHUTES ; PATHS ; PE62203A ; Spacecraft Trajectories and Reentry ; TRAJECTORIES ; WIND ; WIND DIRECTION ; WU031</subject><creationdate>1975</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA955162$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Koopersmith, Robert M</creatorcontrib><creatorcontrib>Pearson, Allan E</creatorcontrib><creatorcontrib>BROWN UNIV PROVIDENCE RI</creatorcontrib><title>Determination of Trajectories for a Gliding Parachute System</title><description>The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of control energy, requires the solution of a nonlinear two-point boundary value problem. However, the structure of the optimal control law is derived in terms of three unknown parameters. Nonlinear algebraic equations for these parameters involving elliptic integrals can be written, but their solution is tedious. A method for computing the parameters is developed through the numerical minimization of a terminal error function. This method requires the integration of a system of twelve differential equations at each iteration. A non-optimal guidance scheme is also given, which prescribes a given geometrical path parameterized by three constants as a trajectory.</description><subject>Aerodynamics</subject><subject>AUTOMATIC</subject><subject>BOUNDARIES</subject><subject>CONSTANTS</subject><subject>CONTROL</subject><subject>CONTROL THEORY</subject><subject>DESCENT TRAJECTORIES</subject><subject>DETERMINATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELLIPSES</subject><subject>ERRORS</subject><subject>FUNCTIONS</subject><subject>GEOMETRY</subject><subject>Gliders and Parachutes</subject><subject>GLIDING</subject><subject>GLIDING PARACHUTES</subject><subject>GUIDANCE</subject><subject>Guided Missile Traj, Accuracy and Ballistics</subject><subject>INTEGRALS</subject><subject>Meteorology</subject><subject>NONLINEAR ALGEBRAIC EQUATIONS</subject><subject>NONLINEAR SYSTEMS</subject><subject>OPTIMIZATION</subject><subject>PARACHUTE DESCENTS</subject><subject>PARACHUTES</subject><subject>PATHS</subject><subject>PE62203A</subject><subject>Spacecraft Trajectories and Reentry</subject><subject>TRAJECTORIES</subject><subject>WIND</subject><subject>WIND DIRECTION</subject><subject>WU031</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1975</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLBxSS1JLcrNzEssyczPU8hPUwgpSsxKTS7JL8pMLVZIyy9SSFRwz8lMycxLVwhILEpMzigtSVUIriwuSc3lYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4ujpampoZmRsYEpAEDESzW</recordid><startdate>197504</startdate><enddate>197504</enddate><creator>Koopersmith, Robert M</creator><creator>Pearson, Allan E</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>197504</creationdate><title>Determination of Trajectories for a Gliding Parachute System</title><author>Koopersmith, Robert M ; Pearson, Allan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA9551623</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Aerodynamics</topic><topic>AUTOMATIC</topic><topic>BOUNDARIES</topic><topic>CONSTANTS</topic><topic>CONTROL</topic><topic>CONTROL THEORY</topic><topic>DESCENT TRAJECTORIES</topic><topic>DETERMINATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELLIPSES</topic><topic>ERRORS</topic><topic>FUNCTIONS</topic><topic>GEOMETRY</topic><topic>Gliders and Parachutes</topic><topic>GLIDING</topic><topic>GLIDING PARACHUTES</topic><topic>GUIDANCE</topic><topic>Guided Missile Traj, Accuracy and Ballistics</topic><topic>INTEGRALS</topic><topic>Meteorology</topic><topic>NONLINEAR ALGEBRAIC EQUATIONS</topic><topic>NONLINEAR SYSTEMS</topic><topic>OPTIMIZATION</topic><topic>PARACHUTE DESCENTS</topic><topic>PARACHUTES</topic><topic>PATHS</topic><topic>PE62203A</topic><topic>Spacecraft Trajectories and Reentry</topic><topic>TRAJECTORIES</topic><topic>WIND</topic><topic>WIND DIRECTION</topic><topic>WU031</topic><toplevel>online_resources</toplevel><creatorcontrib>Koopersmith, Robert M</creatorcontrib><creatorcontrib>Pearson, Allan E</creatorcontrib><creatorcontrib>BROWN UNIV PROVIDENCE RI</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koopersmith, Robert M</au><au>Pearson, Allan E</au><aucorp>BROWN UNIV PROVIDENCE RI</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Determination of Trajectories for a Gliding Parachute System</btitle><date>1975-04</date><risdate>1975</risdate><abstract>The problem of the automatic guidance of a parachute subject to a constant wind is considered. A trajectory is to be determined, through variations of bank angle, to land on an intended target and to approach the target in the upwind direction. Optimal control, involving a minimum expenditure of control energy, requires the solution of a nonlinear two-point boundary value problem. However, the structure of the optimal control law is derived in terms of three unknown parameters. Nonlinear algebraic equations for these parameters involving elliptic integrals can be written, but their solution is tedious. A method for computing the parameters is developed through the numerical minimization of a terminal error function. This method requires the integration of a system of twelve differential equations at each iteration. A non-optimal guidance scheme is also given, which prescribes a given geometrical path parameterized by three constants as a trajectory.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA955162 |
source | DTIC Technical Reports |
subjects | Aerodynamics AUTOMATIC BOUNDARIES CONSTANTS CONTROL CONTROL THEORY DESCENT TRAJECTORIES DETERMINATION DIFFERENTIAL EQUATIONS ELLIPSES ERRORS FUNCTIONS GEOMETRY Gliders and Parachutes GLIDING GLIDING PARACHUTES GUIDANCE Guided Missile Traj, Accuracy and Ballistics INTEGRALS Meteorology NONLINEAR ALGEBRAIC EQUATIONS NONLINEAR SYSTEMS OPTIMIZATION PARACHUTE DESCENTS PARACHUTES PATHS PE62203A Spacecraft Trajectories and Reentry TRAJECTORIES WIND WIND DIRECTION WU031 |
title | Determination of Trajectories for a Gliding Parachute System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Determination%20of%20Trajectories%20for%20a%20Gliding%20Parachute%20System&rft.au=Koopersmith,%20Robert%20M&rft.aucorp=BROWN%20UNIV%20PROVIDENCE%20RI&rft.date=1975-04&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA955162%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |