Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits
Visual figures are detectable based on a range of spatiotemporal characteristics that differ from surrounding background. A figure that corresponds to an ordinary moving object generates coherent two-point space-time correlations related to the first moment of the luminance distribution. Such signal...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Shoemaker, Patrick Nordstrom, Karin Frye, Mark |
description | Visual figures are detectable based on a range of spatiotemporal characteristics that differ from surrounding background. A figure that corresponds to an ordinary moving object generates coherent two-point space-time correlations related to the first moment of the luminance distribution. Such signals are readily detectable by the standard implementation of the Hassenstein-Reichardt elementary motion detector (EMD), and as such are referred to here as EM.
Prepared in collaboration with Uppsala University, Sweden and University of California, Howard Hughes Medical Institute, Los Angeles. The original document contains color images. |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA622420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA622420</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA6224203</originalsourceid><addsrcrecordid>eNqFyrEOwiAQgOEuDkZ9A4d7gSYGjYMbQUkd1KVxMw0BSi8imON4fx3cnf7h--fNo8MweWpv5DzBJTPmBOf0rlxAZ4I7lmoiaAyVPPRk7BNTOIDKiSlHkDFkQp5eBUxycPWVvrtCshW5LJvZaGLxq18XzVqfetW1jtEOhTF5HuRR7oXYic32D38AL0w4fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits</title><source>DTIC Technical Reports</source><creator>Shoemaker, Patrick ; Nordstrom, Karin ; Frye, Mark</creator><creatorcontrib>Shoemaker, Patrick ; Nordstrom, Karin ; Frye, Mark ; TANNER RESEARCH INC MONROVIA CA</creatorcontrib><description>Visual figures are detectable based on a range of spatiotemporal characteristics that differ from surrounding background. A figure that corresponds to an ordinary moving object generates coherent two-point space-time correlations related to the first moment of the luminance distribution. Such signals are readily detectable by the standard implementation of the Hassenstein-Reichardt elementary motion detector (EMD), and as such are referred to here as EM.
Prepared in collaboration with Uppsala University, Sweden and University of California, Howard Hughes Medical Institute, Los Angeles. The original document contains color images.</description><language>eng</language><subject>ALGORITHMS ; Anatomy and Physiology ; BEHAVIOR ; Biology ; BIOPHYSICS ; CLUTTER ; CORRELATION ; ELECTROPHYSIOLOGY ; EMD(ELEMENTARY MOTION DETECTORS) ; EXPERIMENTAL DESIGN ; FEATURE EXTRACTION ; IMAGE PROCESSING ; IN VIVO ANALYSIS ; LUMINANCE ; MATHEMATICAL FILTERS ; MOTION DETECTORS ; NEURAL NETS ; PHOTORECEPTORS ; Psychology ; RESPONSE(BIOLOGY) ; SIGNAL PROCESSING ; SPATIOTEMPORAL CHARACTERISTICS ; STIMULI ; SYNAPSE ; TARGET DETECTION ; TRACKING ; VISUAL FIGURE TRACKING ; VISUAL PERCEPTION ; WHITE NOISE ; WINGED INSECTS</subject><creationdate>2015</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA622420$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Shoemaker, Patrick</creatorcontrib><creatorcontrib>Nordstrom, Karin</creatorcontrib><creatorcontrib>Frye, Mark</creatorcontrib><creatorcontrib>TANNER RESEARCH INC MONROVIA CA</creatorcontrib><title>Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits</title><description>Visual figures are detectable based on a range of spatiotemporal characteristics that differ from surrounding background. A figure that corresponds to an ordinary moving object generates coherent two-point space-time correlations related to the first moment of the luminance distribution. Such signals are readily detectable by the standard implementation of the Hassenstein-Reichardt elementary motion detector (EMD), and as such are referred to here as EM.
Prepared in collaboration with Uppsala University, Sweden and University of California, Howard Hughes Medical Institute, Los Angeles. The original document contains color images.</description><subject>ALGORITHMS</subject><subject>Anatomy and Physiology</subject><subject>BEHAVIOR</subject><subject>Biology</subject><subject>BIOPHYSICS</subject><subject>CLUTTER</subject><subject>CORRELATION</subject><subject>ELECTROPHYSIOLOGY</subject><subject>EMD(ELEMENTARY MOTION DETECTORS)</subject><subject>EXPERIMENTAL DESIGN</subject><subject>FEATURE EXTRACTION</subject><subject>IMAGE PROCESSING</subject><subject>IN VIVO ANALYSIS</subject><subject>LUMINANCE</subject><subject>MATHEMATICAL FILTERS</subject><subject>MOTION DETECTORS</subject><subject>NEURAL NETS</subject><subject>PHOTORECEPTORS</subject><subject>Psychology</subject><subject>RESPONSE(BIOLOGY)</subject><subject>SIGNAL PROCESSING</subject><subject>SPATIOTEMPORAL CHARACTERISTICS</subject><subject>STIMULI</subject><subject>SYNAPSE</subject><subject>TARGET DETECTION</subject><subject>TRACKING</subject><subject>VISUAL FIGURE TRACKING</subject><subject>VISUAL PERCEPTION</subject><subject>WHITE NOISE</subject><subject>WINGED INSECTS</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2015</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFyrEOwiAQgOEuDkZ9A4d7gSYGjYMbQUkd1KVxMw0BSi8imON4fx3cnf7h--fNo8MweWpv5DzBJTPmBOf0rlxAZ4I7lmoiaAyVPPRk7BNTOIDKiSlHkDFkQp5eBUxycPWVvrtCshW5LJvZaGLxq18XzVqfetW1jtEOhTF5HuRR7oXYic32D38AL0w4fg</recordid><startdate>20150530</startdate><enddate>20150530</enddate><creator>Shoemaker, Patrick</creator><creator>Nordstrom, Karin</creator><creator>Frye, Mark</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20150530</creationdate><title>Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits</title><author>Shoemaker, Patrick ; Nordstrom, Karin ; Frye, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA6224203</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ALGORITHMS</topic><topic>Anatomy and Physiology</topic><topic>BEHAVIOR</topic><topic>Biology</topic><topic>BIOPHYSICS</topic><topic>CLUTTER</topic><topic>CORRELATION</topic><topic>ELECTROPHYSIOLOGY</topic><topic>EMD(ELEMENTARY MOTION DETECTORS)</topic><topic>EXPERIMENTAL DESIGN</topic><topic>FEATURE EXTRACTION</topic><topic>IMAGE PROCESSING</topic><topic>IN VIVO ANALYSIS</topic><topic>LUMINANCE</topic><topic>MATHEMATICAL FILTERS</topic><topic>MOTION DETECTORS</topic><topic>NEURAL NETS</topic><topic>PHOTORECEPTORS</topic><topic>Psychology</topic><topic>RESPONSE(BIOLOGY)</topic><topic>SIGNAL PROCESSING</topic><topic>SPATIOTEMPORAL CHARACTERISTICS</topic><topic>STIMULI</topic><topic>SYNAPSE</topic><topic>TARGET DETECTION</topic><topic>TRACKING</topic><topic>VISUAL FIGURE TRACKING</topic><topic>VISUAL PERCEPTION</topic><topic>WHITE NOISE</topic><topic>WINGED INSECTS</topic><toplevel>online_resources</toplevel><creatorcontrib>Shoemaker, Patrick</creatorcontrib><creatorcontrib>Nordstrom, Karin</creatorcontrib><creatorcontrib>Frye, Mark</creatorcontrib><creatorcontrib>TANNER RESEARCH INC MONROVIA CA</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shoemaker, Patrick</au><au>Nordstrom, Karin</au><au>Frye, Mark</au><aucorp>TANNER RESEARCH INC MONROVIA CA</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits</btitle><date>2015-05-30</date><risdate>2015</risdate><abstract>Visual figures are detectable based on a range of spatiotemporal characteristics that differ from surrounding background. A figure that corresponds to an ordinary moving object generates coherent two-point space-time correlations related to the first moment of the luminance distribution. Such signals are readily detectable by the standard implementation of the Hassenstein-Reichardt elementary motion detector (EMD), and as such are referred to here as EM.
Prepared in collaboration with Uppsala University, Sweden and University of California, Howard Hughes Medical Institute, Los Angeles. The original document contains color images.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA622420 |
source | DTIC Technical Reports |
subjects | ALGORITHMS Anatomy and Physiology BEHAVIOR Biology BIOPHYSICS CLUTTER CORRELATION ELECTROPHYSIOLOGY EMD(ELEMENTARY MOTION DETECTORS) EXPERIMENTAL DESIGN FEATURE EXTRACTION IMAGE PROCESSING IN VIVO ANALYSIS LUMINANCE MATHEMATICAL FILTERS MOTION DETECTORS NEURAL NETS PHOTORECEPTORS Psychology RESPONSE(BIOLOGY) SIGNAL PROCESSING SPATIOTEMPORAL CHARACTERISTICS STIMULI SYNAPSE TARGET DETECTION TRACKING VISUAL FIGURE TRACKING VISUAL PERCEPTION WHITE NOISE WINGED INSECTS |
title | Higher-Order Motion Inputs For Visual Figure Tracking: Control Algorithms and Neural Circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Higher-Order%20Motion%20Inputs%20For%20Visual%20Figure%20Tracking:%20Control%20Algorithms%20and%20Neural%20Circuits&rft.au=Shoemaker,%20Patrick&rft.aucorp=TANNER%20RESEARCH%20INC%20MONROVIA%20CA&rft.date=2015-05-30&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA622420%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |