Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures

The most significant instability mechanism which leads to laminar to turbulent transition in hypervelocity flow over cold, slender bodies, characteristic of high enthalpy facilities like the T5 hypervelocity shock tunnel at Caltech, is the so-called second or Mack mode, which depends upon the amplic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jewell, Joseph S, Wagnild, Ross M, Leyva, Ivett A, Candler, Graham V, Shepherd, Joseph E
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Jewell, Joseph S
Wagnild, Ross M
Leyva, Ivett A
Candler, Graham V
Shepherd, Joseph E
description The most significant instability mechanism which leads to laminar to turbulent transition in hypervelocity flow over cold, slender bodies, characteristic of high enthalpy facilities like the T5 hypervelocity shock tunnel at Caltech, is the so-called second or Mack mode, which depends upon the amplication of acoustic disturbances trapped in the boundary layer, as described by Mack (1984). At high Mach number (4) and for cold walls, the first (viscous) mode is damped and higher inviscid modes are amplified, so that the second mode would be expected to be the only mechanism of linear instability leading to transition for a slender cone at zero angle of attack. The original document contains color images. Presented at the American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting held in Dallas, TX on 7-10 January 2013.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA587774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA587774</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA5877743</originalsourceid><addsrcrecordid>eNqFizEKwkAQRdNYiHoDi7nAIqghtms0pFBs0oclmcSBza7MTtS9vRHsrT689_48GSo2LpCQd_AiuZMDA2V8ID_R-oYkwtGPrjUc4WIiMvhvkaoWe0aE0thOaddbhNw7hOlfTDwIoxlAE2_y2xau9JaRMSyTWWdswNVvF8m6OFd5qVqhpg5CDqXWJ50esizb7_7oDyPfPag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures</title><source>DTIC Technical Reports</source><creator>Jewell, Joseph S ; Wagnild, Ross M ; Leyva, Ivett A ; Candler, Graham V ; Shepherd, Joseph E</creator><creatorcontrib>Jewell, Joseph S ; Wagnild, Ross M ; Leyva, Ivett A ; Candler, Graham V ; Shepherd, Joseph E ; AIR FORCE RESEARCH LAB EDWARDS AFB CA AEROSPACE SYSTEMS DIRECTORATE</creatorcontrib><description>The most significant instability mechanism which leads to laminar to turbulent transition in hypervelocity flow over cold, slender bodies, characteristic of high enthalpy facilities like the T5 hypervelocity shock tunnel at Caltech, is the so-called second or Mack mode, which depends upon the amplication of acoustic disturbances trapped in the boundary layer, as described by Mack (1984). At high Mach number (4) and for cold walls, the first (viscous) mode is damped and higher inviscid modes are amplified, so that the second mode would be expected to be the only mechanism of linear instability leading to transition for a slender cone at zero angle of attack. The original document contains color images. Presented at the American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting held in Dallas, TX on 7-10 January 2013.</description><language>eng</language><subject>ANGLE OF ATTACK ; BOUNDARY LAYER ; ENTHALPY ; Fluid Mechanics ; FREE STREAM ; INVISCID FLOW ; LOW TEMPERATURE ; MACH NUMBER ; REYNOLDS NUMBER ; SHOCK TUNNELS ; SLENDER BODIES ; TRAPPING(CHARGED PARTICLES) ; VISCOSITY</subject><creationdate>2013</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27546,27547</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA587774$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jewell, Joseph S</creatorcontrib><creatorcontrib>Wagnild, Ross M</creatorcontrib><creatorcontrib>Leyva, Ivett A</creatorcontrib><creatorcontrib>Candler, Graham V</creatorcontrib><creatorcontrib>Shepherd, Joseph E</creatorcontrib><creatorcontrib>AIR FORCE RESEARCH LAB EDWARDS AFB CA AEROSPACE SYSTEMS DIRECTORATE</creatorcontrib><title>Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures</title><description>The most significant instability mechanism which leads to laminar to turbulent transition in hypervelocity flow over cold, slender bodies, characteristic of high enthalpy facilities like the T5 hypervelocity shock tunnel at Caltech, is the so-called second or Mack mode, which depends upon the amplication of acoustic disturbances trapped in the boundary layer, as described by Mack (1984). At high Mach number (4) and for cold walls, the first (viscous) mode is damped and higher inviscid modes are amplified, so that the second mode would be expected to be the only mechanism of linear instability leading to transition for a slender cone at zero angle of attack. The original document contains color images. Presented at the American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting held in Dallas, TX on 7-10 January 2013.</description><subject>ANGLE OF ATTACK</subject><subject>BOUNDARY LAYER</subject><subject>ENTHALPY</subject><subject>Fluid Mechanics</subject><subject>FREE STREAM</subject><subject>INVISCID FLOW</subject><subject>LOW TEMPERATURE</subject><subject>MACH NUMBER</subject><subject>REYNOLDS NUMBER</subject><subject>SHOCK TUNNELS</subject><subject>SLENDER BODIES</subject><subject>TRAPPING(CHARGED PARTICLES)</subject><subject>VISCOSITY</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2013</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFizEKwkAQRdNYiHoDi7nAIqghtms0pFBs0oclmcSBza7MTtS9vRHsrT689_48GSo2LpCQd_AiuZMDA2V8ID_R-oYkwtGPrjUc4WIiMvhvkaoWe0aE0thOaddbhNw7hOlfTDwIoxlAE2_y2xau9JaRMSyTWWdswNVvF8m6OFd5qVqhpg5CDqXWJ50esizb7_7oDyPfPag</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Jewell, Joseph S</creator><creator>Wagnild, Ross M</creator><creator>Leyva, Ivett A</creator><creator>Candler, Graham V</creator><creator>Shepherd, Joseph E</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>201301</creationdate><title>Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures</title><author>Jewell, Joseph S ; Wagnild, Ross M ; Leyva, Ivett A ; Candler, Graham V ; Shepherd, Joseph E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA5877743</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ANGLE OF ATTACK</topic><topic>BOUNDARY LAYER</topic><topic>ENTHALPY</topic><topic>Fluid Mechanics</topic><topic>FREE STREAM</topic><topic>INVISCID FLOW</topic><topic>LOW TEMPERATURE</topic><topic>MACH NUMBER</topic><topic>REYNOLDS NUMBER</topic><topic>SHOCK TUNNELS</topic><topic>SLENDER BODIES</topic><topic>TRAPPING(CHARGED PARTICLES)</topic><topic>VISCOSITY</topic><toplevel>online_resources</toplevel><creatorcontrib>Jewell, Joseph S</creatorcontrib><creatorcontrib>Wagnild, Ross M</creatorcontrib><creatorcontrib>Leyva, Ivett A</creatorcontrib><creatorcontrib>Candler, Graham V</creatorcontrib><creatorcontrib>Shepherd, Joseph E</creatorcontrib><creatorcontrib>AIR FORCE RESEARCH LAB EDWARDS AFB CA AEROSPACE SYSTEMS DIRECTORATE</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jewell, Joseph S</au><au>Wagnild, Ross M</au><au>Leyva, Ivett A</au><au>Candler, Graham V</au><au>Shepherd, Joseph E</au><aucorp>AIR FORCE RESEARCH LAB EDWARDS AFB CA AEROSPACE SYSTEMS DIRECTORATE</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures</btitle><date>2013-01</date><risdate>2013</risdate><abstract>The most significant instability mechanism which leads to laminar to turbulent transition in hypervelocity flow over cold, slender bodies, characteristic of high enthalpy facilities like the T5 hypervelocity shock tunnel at Caltech, is the so-called second or Mack mode, which depends upon the amplication of acoustic disturbances trapped in the boundary layer, as described by Mack (1984). At high Mach number (4) and for cold walls, the first (viscous) mode is damped and higher inviscid modes are amplified, so that the second mode would be expected to be the only mechanism of linear instability leading to transition for a slender cone at zero angle of attack. The original document contains color images. Presented at the American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting held in Dallas, TX on 7-10 January 2013.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA587774
source DTIC Technical Reports
subjects ANGLE OF ATTACK
BOUNDARY LAYER
ENTHALPY
Fluid Mechanics
FREE STREAM
INVISCID FLOW
LOW TEMPERATURE
MACH NUMBER
REYNOLDS NUMBER
SHOCK TUNNELS
SLENDER BODIES
TRAPPING(CHARGED PARTICLES)
VISCOSITY
title Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Transition%20within%20a%20Hypervelocity%20Boundary%20Layer%20on%20a%205-degree%20Half-Angle%20Cone%20in%20Freestream%20Air/CO2%20Mixtures&rft.au=Jewell,%20Joseph%20S&rft.aucorp=AIR%20FORCE%20RESEARCH%20LAB%20EDWARDS%20AFB%20CA%20AEROSPACE%20SYSTEMS%20DIRECTORATE&rft.date=2013-01&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA587774%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true