Multiscale Modeling of Particle-Solidification Front Dynamics, Part 3: Theoretical Aspects and Parametric Study (Preprint)

The development of the solidified microstructure in metal-matrix composites depends on complex interactions between non-planar solidification fronts and multiple particles. The problem is multiscale in nature; the motion of the particle (under the action of a nano-scale disjoining pressure force and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Garvin, Justin W, Yang, Yi, Udaykumar, H S
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Garvin, Justin W
Yang, Yi
Udaykumar, H S
description The development of the solidified microstructure in metal-matrix composites depends on complex interactions between non-planar solidification fronts and multiple particles. The problem is multiscale in nature; the motion of the particle (under the action of a nano-scale disjoining pressure force and a micro-scale viscous drag force) is dynamically coupled with the developing solidification front morphology, which is dependent on a variety of thermal conditions. Using computational techniques discussed in parts I and II, this paper seeks to describe the complicated nonlinear parametric dependencies of the phenomenon. The effects of four of the most important parameters in the particle-solidification front interaction are investigated, i.e. the Hamaker constant, the particle size, the thermal conductivity ratio of the particle to the melt, and the solid-liquid interfacial free energy. By performing simulations using the multiscale approach the dependencies of the critical velocity on these four parameters is clarified. Submitted for publication in the International Journal of Heat and Mass Transfer. Prepared in collaboration with Falk Corporation, Milwaukee, WI, and The University of Iowa, Iowa City, IA.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA471782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA471782</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA4717823</originalsourceid><addsrcrecordid>eNqFjLEKwkAQBdNYiPoHFlsqmEIjROyCMdgEhKQPy91GFy534W5TxK83ir3VFDPvzaNXORjhoNAQlE6TYfsA18IdvbAyFFfOsOaWFQo7C4V3ViAfLXaswu7bQXKG-knO0zRBA1noSUkAtPrjsSPxrKCSQY-wuXvqPVvZLqNZiybQ6sdFtC6u9eUW6-mmCcKWpMny7Jju09Mh-aPfDk1DEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Multiscale Modeling of Particle-Solidification Front Dynamics, Part 3: Theoretical Aspects and Parametric Study (Preprint)</title><source>DTIC Technical Reports</source><creator>Garvin, Justin W ; Yang, Yi ; Udaykumar, H S</creator><creatorcontrib>Garvin, Justin W ; Yang, Yi ; Udaykumar, H S ; AIR FORCE RESEARCH LAB EGLIN AFB FL MUNITIONS DIRECTORATE</creatorcontrib><description>The development of the solidified microstructure in metal-matrix composites depends on complex interactions between non-planar solidification fronts and multiple particles. The problem is multiscale in nature; the motion of the particle (under the action of a nano-scale disjoining pressure force and a micro-scale viscous drag force) is dynamically coupled with the developing solidification front morphology, which is dependent on a variety of thermal conditions. Using computational techniques discussed in parts I and II, this paper seeks to describe the complicated nonlinear parametric dependencies of the phenomenon. The effects of four of the most important parameters in the particle-solidification front interaction are investigated, i.e. the Hamaker constant, the particle size, the thermal conductivity ratio of the particle to the melt, and the solid-liquid interfacial free energy. By performing simulations using the multiscale approach the dependencies of the critical velocity on these four parameters is clarified. Submitted for publication in the International Journal of Heat and Mass Transfer. Prepared in collaboration with Falk Corporation, Milwaukee, WI, and The University of Iowa, Iowa City, IA.</description><language>eng</language><subject>CONSTANTS ; INTERACTIONS ; Laminates and Composite Materials ; METAL MATRIX COMPOSITES ; MICROSTRUCTURE ; MORPHOLOGY ; MULTIPLE OPERATION ; MULTISCALE ; PARAMETRIC ANALYSIS ; PARTICLE SIZE ; PARTICLES ; PREPRINTS ; SOLIDIFICATION ; Theoretical Mathematics ; THEORY ; THERMAL CONDUCTIVITY</subject><creationdate>2007</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27544,27545</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA471782$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Garvin, Justin W</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Udaykumar, H S</creatorcontrib><creatorcontrib>AIR FORCE RESEARCH LAB EGLIN AFB FL MUNITIONS DIRECTORATE</creatorcontrib><title>Multiscale Modeling of Particle-Solidification Front Dynamics, Part 3: Theoretical Aspects and Parametric Study (Preprint)</title><description>The development of the solidified microstructure in metal-matrix composites depends on complex interactions between non-planar solidification fronts and multiple particles. The problem is multiscale in nature; the motion of the particle (under the action of a nano-scale disjoining pressure force and a micro-scale viscous drag force) is dynamically coupled with the developing solidification front morphology, which is dependent on a variety of thermal conditions. Using computational techniques discussed in parts I and II, this paper seeks to describe the complicated nonlinear parametric dependencies of the phenomenon. The effects of four of the most important parameters in the particle-solidification front interaction are investigated, i.e. the Hamaker constant, the particle size, the thermal conductivity ratio of the particle to the melt, and the solid-liquid interfacial free energy. By performing simulations using the multiscale approach the dependencies of the critical velocity on these four parameters is clarified. Submitted for publication in the International Journal of Heat and Mass Transfer. Prepared in collaboration with Falk Corporation, Milwaukee, WI, and The University of Iowa, Iowa City, IA.</description><subject>CONSTANTS</subject><subject>INTERACTIONS</subject><subject>Laminates and Composite Materials</subject><subject>METAL MATRIX COMPOSITES</subject><subject>MICROSTRUCTURE</subject><subject>MORPHOLOGY</subject><subject>MULTIPLE OPERATION</subject><subject>MULTISCALE</subject><subject>PARAMETRIC ANALYSIS</subject><subject>PARTICLE SIZE</subject><subject>PARTICLES</subject><subject>PREPRINTS</subject><subject>SOLIDIFICATION</subject><subject>Theoretical Mathematics</subject><subject>THEORY</subject><subject>THERMAL CONDUCTIVITY</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2007</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFjLEKwkAQBdNYiPoHFlsqmEIjROyCMdgEhKQPy91GFy534W5TxK83ir3VFDPvzaNXORjhoNAQlE6TYfsA18IdvbAyFFfOsOaWFQo7C4V3ViAfLXaswu7bQXKG-knO0zRBA1noSUkAtPrjsSPxrKCSQY-wuXvqPVvZLqNZiybQ6sdFtC6u9eUW6-mmCcKWpMny7Jju09Mh-aPfDk1DEQ</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Garvin, Justin W</creator><creator>Yang, Yi</creator><creator>Udaykumar, H S</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>200709</creationdate><title>Multiscale Modeling of Particle-Solidification Front Dynamics, Part 3: Theoretical Aspects and Parametric Study (Preprint)</title><author>Garvin, Justin W ; Yang, Yi ; Udaykumar, H S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA4717823</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2007</creationdate><topic>CONSTANTS</topic><topic>INTERACTIONS</topic><topic>Laminates and Composite Materials</topic><topic>METAL MATRIX COMPOSITES</topic><topic>MICROSTRUCTURE</topic><topic>MORPHOLOGY</topic><topic>MULTIPLE OPERATION</topic><topic>MULTISCALE</topic><topic>PARAMETRIC ANALYSIS</topic><topic>PARTICLE SIZE</topic><topic>PARTICLES</topic><topic>PREPRINTS</topic><topic>SOLIDIFICATION</topic><topic>Theoretical Mathematics</topic><topic>THEORY</topic><topic>THERMAL CONDUCTIVITY</topic><toplevel>online_resources</toplevel><creatorcontrib>Garvin, Justin W</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Udaykumar, H S</creatorcontrib><creatorcontrib>AIR FORCE RESEARCH LAB EGLIN AFB FL MUNITIONS DIRECTORATE</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garvin, Justin W</au><au>Yang, Yi</au><au>Udaykumar, H S</au><aucorp>AIR FORCE RESEARCH LAB EGLIN AFB FL MUNITIONS DIRECTORATE</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Multiscale Modeling of Particle-Solidification Front Dynamics, Part 3: Theoretical Aspects and Parametric Study (Preprint)</btitle><date>2007-09</date><risdate>2007</risdate><abstract>The development of the solidified microstructure in metal-matrix composites depends on complex interactions between non-planar solidification fronts and multiple particles. The problem is multiscale in nature; the motion of the particle (under the action of a nano-scale disjoining pressure force and a micro-scale viscous drag force) is dynamically coupled with the developing solidification front morphology, which is dependent on a variety of thermal conditions. Using computational techniques discussed in parts I and II, this paper seeks to describe the complicated nonlinear parametric dependencies of the phenomenon. The effects of four of the most important parameters in the particle-solidification front interaction are investigated, i.e. the Hamaker constant, the particle size, the thermal conductivity ratio of the particle to the melt, and the solid-liquid interfacial free energy. By performing simulations using the multiscale approach the dependencies of the critical velocity on these four parameters is clarified. Submitted for publication in the International Journal of Heat and Mass Transfer. Prepared in collaboration with Falk Corporation, Milwaukee, WI, and The University of Iowa, Iowa City, IA.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA471782
source DTIC Technical Reports
subjects CONSTANTS
INTERACTIONS
Laminates and Composite Materials
METAL MATRIX COMPOSITES
MICROSTRUCTURE
MORPHOLOGY
MULTIPLE OPERATION
MULTISCALE
PARAMETRIC ANALYSIS
PARTICLE SIZE
PARTICLES
PREPRINTS
SOLIDIFICATION
Theoretical Mathematics
THEORY
THERMAL CONDUCTIVITY
title Multiscale Modeling of Particle-Solidification Front Dynamics, Part 3: Theoretical Aspects and Parametric Study (Preprint)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Multiscale%20Modeling%20of%20Particle-Solidification%20Front%20Dynamics,%20Part%203:%20Theoretical%20Aspects%20and%20Parametric%20Study%20(Preprint)&rft.au=Garvin,%20Justin%20W&rft.aucorp=AIR%20FORCE%20RESEARCH%20LAB%20EGLIN%20AFB%20FL%20MUNITIONS%20DIRECTORATE&rft.date=2007-09&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA471782%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true