Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics
The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bi...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Santiago, Juan G Sundaram, Shankar Krishnamoorthy, S Przekwas, Andrzej J Meinhart, Carl Myszka, David G Ricco, Antonia Boone, Travis Knio, Omar Najm, Habib |
description | The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bio-electro-mechanical systems (MEMS) community (over 50 organizations) through CFD-ACE+. The team further developed rapid (e.g., 1000x faster) biokinetics data extraction methods for antibody assays; and discovered and created models for an electrokinetic instability and used it to create 1000x faster a micromixer. The team developed a novel on-chip assay device that combines isoelectric focusing and electrophoresis to achieve a 2D assay in 1/30th of the time of a traditional system. Lastly, the team developed a method that achieved 1100x fold on-chip electrophoretic sample preconcentration which lead to an additional task focused on developing rapid sample pre-concentration methods to improve on-chip assay. The team developed new codes for eletrokinetic convective-diffusion assays with fast reaction kinetics capability. The team experimentally demonstrated million-fold sample concentration increase (three orders of magnitude improvement), using optimized isotachophoresis.
The original document contains color images. Sponsored in part by the Defense Advanced Research Projects Agency (DARPA). |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA459906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA459906</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA4599063</originalsourceid><addsrcrecordid>eNqFjD0KwkAQRtNYiHoDizmAguAPpFSj2KQQ7MOYnejCZCfsTAK5hUc2AXur78H3eNPkc28xmDc03xFk1BFLU1MwBang5KUWprJljJCh4ROVdAU5obaRRm9ge4sTlle_AgwOzlI3kd4UdEw-IgZtJA6iOGKFSuLYxYDcmy-RIfdllIpb73yp82RSISstfjtLltfL43xbu0Eu1HwgK47ZcbdP081h--f-AgjNTXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics</title><source>DTIC Technical Reports</source><creator>Santiago, Juan G ; Sundaram, Shankar ; Krishnamoorthy, S ; Przekwas, Andrzej J ; Meinhart, Carl ; Myszka, David G ; Ricco, Antonia ; Boone, Travis ; Knio, Omar ; Najm, Habib</creator><creatorcontrib>Santiago, Juan G ; Sundaram, Shankar ; Krishnamoorthy, S ; Przekwas, Andrzej J ; Meinhart, Carl ; Myszka, David G ; Ricco, Antonia ; Boone, Travis ; Knio, Omar ; Najm, Habib ; STANFORD UNIV CA</creatorcontrib><description>The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bio-electro-mechanical systems (MEMS) community (over 50 organizations) through CFD-ACE+. The team further developed rapid (e.g., 1000x faster) biokinetics data extraction methods for antibody assays; and discovered and created models for an electrokinetic instability and used it to create 1000x faster a micromixer. The team developed a novel on-chip assay device that combines isoelectric focusing and electrophoresis to achieve a 2D assay in 1/30th of the time of a traditional system. Lastly, the team developed a method that achieved 1100x fold on-chip electrophoretic sample preconcentration which lead to an additional task focused on developing rapid sample pre-concentration methods to improve on-chip assay. The team developed new codes for eletrokinetic convective-diffusion assays with fast reaction kinetics capability. The team experimentally demonstrated million-fold sample concentration increase (three orders of magnitude improvement), using optimized isotachophoresis.
The original document contains color images. Sponsored in part by the Defense Advanced Research Projects Agency (DARPA).</description><language>eng</language><subject>ASSAYING ; ASSAYING DEVICES ; BIO-MEMS ; Biochemistry ; COMPUTATIONAL FLUID DYNAMICS ; ELECTROKINETICS ; FLUID MECHANICS ; FLUIDICS ; Fluidics and Fluerics ; MICROARRAYS ; MICROELECTROMECHANICAL SYSTEMS ; MICROFLUIDICS ; MICROMIXING ; NUMERICAL MODELING ; PE61101E ; PRECONCENTRATION ; PROTEOMICS ; REACTION KINETICS ; SAMPLE STACKING ; Test Facilities, Equipment and Methods ; WUAFRLE1170061</subject><creationdate>2006</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA459906$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Santiago, Juan G</creatorcontrib><creatorcontrib>Sundaram, Shankar</creatorcontrib><creatorcontrib>Krishnamoorthy, S</creatorcontrib><creatorcontrib>Przekwas, Andrzej J</creatorcontrib><creatorcontrib>Meinhart, Carl</creatorcontrib><creatorcontrib>Myszka, David G</creatorcontrib><creatorcontrib>Ricco, Antonia</creatorcontrib><creatorcontrib>Boone, Travis</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Najm, Habib</creatorcontrib><creatorcontrib>STANFORD UNIV CA</creatorcontrib><title>Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics</title><description>The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bio-electro-mechanical systems (MEMS) community (over 50 organizations) through CFD-ACE+. The team further developed rapid (e.g., 1000x faster) biokinetics data extraction methods for antibody assays; and discovered and created models for an electrokinetic instability and used it to create 1000x faster a micromixer. The team developed a novel on-chip assay device that combines isoelectric focusing and electrophoresis to achieve a 2D assay in 1/30th of the time of a traditional system. Lastly, the team developed a method that achieved 1100x fold on-chip electrophoretic sample preconcentration which lead to an additional task focused on developing rapid sample pre-concentration methods to improve on-chip assay. The team developed new codes for eletrokinetic convective-diffusion assays with fast reaction kinetics capability. The team experimentally demonstrated million-fold sample concentration increase (three orders of magnitude improvement), using optimized isotachophoresis.
The original document contains color images. Sponsored in part by the Defense Advanced Research Projects Agency (DARPA).</description><subject>ASSAYING</subject><subject>ASSAYING DEVICES</subject><subject>BIO-MEMS</subject><subject>Biochemistry</subject><subject>COMPUTATIONAL FLUID DYNAMICS</subject><subject>ELECTROKINETICS</subject><subject>FLUID MECHANICS</subject><subject>FLUIDICS</subject><subject>Fluidics and Fluerics</subject><subject>MICROARRAYS</subject><subject>MICROELECTROMECHANICAL SYSTEMS</subject><subject>MICROFLUIDICS</subject><subject>MICROMIXING</subject><subject>NUMERICAL MODELING</subject><subject>PE61101E</subject><subject>PRECONCENTRATION</subject><subject>PROTEOMICS</subject><subject>REACTION KINETICS</subject><subject>SAMPLE STACKING</subject><subject>Test Facilities, Equipment and Methods</subject><subject>WUAFRLE1170061</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2006</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFjD0KwkAQRtNYiHoDizmAguAPpFSj2KQQ7MOYnejCZCfsTAK5hUc2AXur78H3eNPkc28xmDc03xFk1BFLU1MwBang5KUWprJljJCh4ROVdAU5obaRRm9ge4sTlle_AgwOzlI3kd4UdEw-IgZtJA6iOGKFSuLYxYDcmy-RIfdllIpb73yp82RSISstfjtLltfL43xbu0Eu1HwgK47ZcbdP081h--f-AgjNTXo</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Santiago, Juan G</creator><creator>Sundaram, Shankar</creator><creator>Krishnamoorthy, S</creator><creator>Przekwas, Andrzej J</creator><creator>Meinhart, Carl</creator><creator>Myszka, David G</creator><creator>Ricco, Antonia</creator><creator>Boone, Travis</creator><creator>Knio, Omar</creator><creator>Najm, Habib</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>200610</creationdate><title>Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics</title><author>Santiago, Juan G ; Sundaram, Shankar ; Krishnamoorthy, S ; Przekwas, Andrzej J ; Meinhart, Carl ; Myszka, David G ; Ricco, Antonia ; Boone, Travis ; Knio, Omar ; Najm, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA4599063</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ASSAYING</topic><topic>ASSAYING DEVICES</topic><topic>BIO-MEMS</topic><topic>Biochemistry</topic><topic>COMPUTATIONAL FLUID DYNAMICS</topic><topic>ELECTROKINETICS</topic><topic>FLUID MECHANICS</topic><topic>FLUIDICS</topic><topic>Fluidics and Fluerics</topic><topic>MICROARRAYS</topic><topic>MICROELECTROMECHANICAL SYSTEMS</topic><topic>MICROFLUIDICS</topic><topic>MICROMIXING</topic><topic>NUMERICAL MODELING</topic><topic>PE61101E</topic><topic>PRECONCENTRATION</topic><topic>PROTEOMICS</topic><topic>REACTION KINETICS</topic><topic>SAMPLE STACKING</topic><topic>Test Facilities, Equipment and Methods</topic><topic>WUAFRLE1170061</topic><toplevel>online_resources</toplevel><creatorcontrib>Santiago, Juan G</creatorcontrib><creatorcontrib>Sundaram, Shankar</creatorcontrib><creatorcontrib>Krishnamoorthy, S</creatorcontrib><creatorcontrib>Przekwas, Andrzej J</creatorcontrib><creatorcontrib>Meinhart, Carl</creatorcontrib><creatorcontrib>Myszka, David G</creatorcontrib><creatorcontrib>Ricco, Antonia</creatorcontrib><creatorcontrib>Boone, Travis</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Najm, Habib</creatorcontrib><creatorcontrib>STANFORD UNIV CA</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santiago, Juan G</au><au>Sundaram, Shankar</au><au>Krishnamoorthy, S</au><au>Przekwas, Andrzej J</au><au>Meinhart, Carl</au><au>Myszka, David G</au><au>Ricco, Antonia</au><au>Boone, Travis</au><au>Knio, Omar</au><au>Najm, Habib</au><aucorp>STANFORD UNIV CA</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics</btitle><date>2006-10</date><risdate>2006</risdate><abstract>The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bio-electro-mechanical systems (MEMS) community (over 50 organizations) through CFD-ACE+. The team further developed rapid (e.g., 1000x faster) biokinetics data extraction methods for antibody assays; and discovered and created models for an electrokinetic instability and used it to create 1000x faster a micromixer. The team developed a novel on-chip assay device that combines isoelectric focusing and electrophoresis to achieve a 2D assay in 1/30th of the time of a traditional system. Lastly, the team developed a method that achieved 1100x fold on-chip electrophoretic sample preconcentration which lead to an additional task focused on developing rapid sample pre-concentration methods to improve on-chip assay. The team developed new codes for eletrokinetic convective-diffusion assays with fast reaction kinetics capability. The team experimentally demonstrated million-fold sample concentration increase (three orders of magnitude improvement), using optimized isotachophoresis.
The original document contains color images. Sponsored in part by the Defense Advanced Research Projects Agency (DARPA).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA459906 |
source | DTIC Technical Reports |
subjects | ASSAYING ASSAYING DEVICES BIO-MEMS Biochemistry COMPUTATIONAL FLUID DYNAMICS ELECTROKINETICS FLUID MECHANICS FLUIDICS Fluidics and Fluerics MICROARRAYS MICROELECTROMECHANICAL SYSTEMS MICROFLUIDICS MICROMIXING NUMERICAL MODELING PE61101E PRECONCENTRATION PROTEOMICS REACTION KINETICS SAMPLE STACKING Test Facilities, Equipment and Methods WUAFRLE1170061 |
title | Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Quantitative%20Developments%20of%20Biomolecular%20Databases,%20Measurement%20Methodology,%20and%20Comprehensive%20Transport%20Models%20for%20Bioanalytical%20Microfluidics&rft.au=Santiago,%20Juan%20G&rft.aucorp=STANFORD%20UNIV%20CA&rft.date=2006-10&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA459906%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |