Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics

The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santiago, Juan G, Sundaram, Shankar, Krishnamoorthy, S, Przekwas, Andrzej J, Meinhart, Carl, Myszka, David G, Ricco, Antonia, Boone, Travis, Knio, Omar, Najm, Habib
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Santiago, Juan G
Sundaram, Shankar
Krishnamoorthy, S
Przekwas, Andrzej J
Meinhart, Carl
Myszka, David G
Ricco, Antonia
Boone, Travis
Knio, Omar
Najm, Habib
description The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bio-electro-mechanical systems (MEMS) community (over 50 organizations) through CFD-ACE+. The team further developed rapid (e.g., 1000x faster) biokinetics data extraction methods for antibody assays; and discovered and created models for an electrokinetic instability and used it to create 1000x faster a micromixer. The team developed a novel on-chip assay device that combines isoelectric focusing and electrophoresis to achieve a 2D assay in 1/30th of the time of a traditional system. Lastly, the team developed a method that achieved 1100x fold on-chip electrophoretic sample preconcentration which lead to an additional task focused on developing rapid sample pre-concentration methods to improve on-chip assay. The team developed new codes for eletrokinetic convective-diffusion assays with fast reaction kinetics capability. The team experimentally demonstrated million-fold sample concentration increase (three orders of magnitude improvement), using optimized isotachophoresis. The original document contains color images. Sponsored in part by the Defense Advanced Research Projects Agency (DARPA).
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA459906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA459906</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA4599063</originalsourceid><addsrcrecordid>eNqFjD0KwkAQRtNYiHoDizmAguAPpFSj2KQQ7MOYnejCZCfsTAK5hUc2AXur78H3eNPkc28xmDc03xFk1BFLU1MwBang5KUWprJljJCh4ROVdAU5obaRRm9ge4sTlle_AgwOzlI3kd4UdEw-IgZtJA6iOGKFSuLYxYDcmy-RIfdllIpb73yp82RSISstfjtLltfL43xbu0Eu1HwgK47ZcbdP081h--f-AgjNTXo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics</title><source>DTIC Technical Reports</source><creator>Santiago, Juan G ; Sundaram, Shankar ; Krishnamoorthy, S ; Przekwas, Andrzej J ; Meinhart, Carl ; Myszka, David G ; Ricco, Antonia ; Boone, Travis ; Knio, Omar ; Najm, Habib</creator><creatorcontrib>Santiago, Juan G ; Sundaram, Shankar ; Krishnamoorthy, S ; Przekwas, Andrzej J ; Meinhart, Carl ; Myszka, David G ; Ricco, Antonia ; Boone, Travis ; Knio, Omar ; Najm, Habib ; STANFORD UNIV CA</creatorcontrib><description>The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bio-electro-mechanical systems (MEMS) community (over 50 organizations) through CFD-ACE+. The team further developed rapid (e.g., 1000x faster) biokinetics data extraction methods for antibody assays; and discovered and created models for an electrokinetic instability and used it to create 1000x faster a micromixer. The team developed a novel on-chip assay device that combines isoelectric focusing and electrophoresis to achieve a 2D assay in 1/30th of the time of a traditional system. Lastly, the team developed a method that achieved 1100x fold on-chip electrophoretic sample preconcentration which lead to an additional task focused on developing rapid sample pre-concentration methods to improve on-chip assay. The team developed new codes for eletrokinetic convective-diffusion assays with fast reaction kinetics capability. The team experimentally demonstrated million-fold sample concentration increase (three orders of magnitude improvement), using optimized isotachophoresis. The original document contains color images. Sponsored in part by the Defense Advanced Research Projects Agency (DARPA).</description><language>eng</language><subject>ASSAYING ; ASSAYING DEVICES ; BIO-MEMS ; Biochemistry ; COMPUTATIONAL FLUID DYNAMICS ; ELECTROKINETICS ; FLUID MECHANICS ; FLUIDICS ; Fluidics and Fluerics ; MICROARRAYS ; MICROELECTROMECHANICAL SYSTEMS ; MICROFLUIDICS ; MICROMIXING ; NUMERICAL MODELING ; PE61101E ; PRECONCENTRATION ; PROTEOMICS ; REACTION KINETICS ; SAMPLE STACKING ; Test Facilities, Equipment and Methods ; WUAFRLE1170061</subject><creationdate>2006</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA459906$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Santiago, Juan G</creatorcontrib><creatorcontrib>Sundaram, Shankar</creatorcontrib><creatorcontrib>Krishnamoorthy, S</creatorcontrib><creatorcontrib>Przekwas, Andrzej J</creatorcontrib><creatorcontrib>Meinhart, Carl</creatorcontrib><creatorcontrib>Myszka, David G</creatorcontrib><creatorcontrib>Ricco, Antonia</creatorcontrib><creatorcontrib>Boone, Travis</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Najm, Habib</creatorcontrib><creatorcontrib>STANFORD UNIV CA</creatorcontrib><title>Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics</title><description>The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bio-electro-mechanical systems (MEMS) community (over 50 organizations) through CFD-ACE+. The team further developed rapid (e.g., 1000x faster) biokinetics data extraction methods for antibody assays; and discovered and created models for an electrokinetic instability and used it to create 1000x faster a micromixer. The team developed a novel on-chip assay device that combines isoelectric focusing and electrophoresis to achieve a 2D assay in 1/30th of the time of a traditional system. Lastly, the team developed a method that achieved 1100x fold on-chip electrophoretic sample preconcentration which lead to an additional task focused on developing rapid sample pre-concentration methods to improve on-chip assay. The team developed new codes for eletrokinetic convective-diffusion assays with fast reaction kinetics capability. The team experimentally demonstrated million-fold sample concentration increase (three orders of magnitude improvement), using optimized isotachophoresis. The original document contains color images. Sponsored in part by the Defense Advanced Research Projects Agency (DARPA).</description><subject>ASSAYING</subject><subject>ASSAYING DEVICES</subject><subject>BIO-MEMS</subject><subject>Biochemistry</subject><subject>COMPUTATIONAL FLUID DYNAMICS</subject><subject>ELECTROKINETICS</subject><subject>FLUID MECHANICS</subject><subject>FLUIDICS</subject><subject>Fluidics and Fluerics</subject><subject>MICROARRAYS</subject><subject>MICROELECTROMECHANICAL SYSTEMS</subject><subject>MICROFLUIDICS</subject><subject>MICROMIXING</subject><subject>NUMERICAL MODELING</subject><subject>PE61101E</subject><subject>PRECONCENTRATION</subject><subject>PROTEOMICS</subject><subject>REACTION KINETICS</subject><subject>SAMPLE STACKING</subject><subject>Test Facilities, Equipment and Methods</subject><subject>WUAFRLE1170061</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2006</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFjD0KwkAQRtNYiHoDizmAguAPpFSj2KQQ7MOYnejCZCfsTAK5hUc2AXur78H3eNPkc28xmDc03xFk1BFLU1MwBang5KUWprJljJCh4ROVdAU5obaRRm9ge4sTlle_AgwOzlI3kd4UdEw-IgZtJA6iOGKFSuLYxYDcmy-RIfdllIpb73yp82RSISstfjtLltfL43xbu0Eu1HwgK47ZcbdP081h--f-AgjNTXo</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Santiago, Juan G</creator><creator>Sundaram, Shankar</creator><creator>Krishnamoorthy, S</creator><creator>Przekwas, Andrzej J</creator><creator>Meinhart, Carl</creator><creator>Myszka, David G</creator><creator>Ricco, Antonia</creator><creator>Boone, Travis</creator><creator>Knio, Omar</creator><creator>Najm, Habib</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>200610</creationdate><title>Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics</title><author>Santiago, Juan G ; Sundaram, Shankar ; Krishnamoorthy, S ; Przekwas, Andrzej J ; Meinhart, Carl ; Myszka, David G ; Ricco, Antonia ; Boone, Travis ; Knio, Omar ; Najm, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA4599063</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ASSAYING</topic><topic>ASSAYING DEVICES</topic><topic>BIO-MEMS</topic><topic>Biochemistry</topic><topic>COMPUTATIONAL FLUID DYNAMICS</topic><topic>ELECTROKINETICS</topic><topic>FLUID MECHANICS</topic><topic>FLUIDICS</topic><topic>Fluidics and Fluerics</topic><topic>MICROARRAYS</topic><topic>MICROELECTROMECHANICAL SYSTEMS</topic><topic>MICROFLUIDICS</topic><topic>MICROMIXING</topic><topic>NUMERICAL MODELING</topic><topic>PE61101E</topic><topic>PRECONCENTRATION</topic><topic>PROTEOMICS</topic><topic>REACTION KINETICS</topic><topic>SAMPLE STACKING</topic><topic>Test Facilities, Equipment and Methods</topic><topic>WUAFRLE1170061</topic><toplevel>online_resources</toplevel><creatorcontrib>Santiago, Juan G</creatorcontrib><creatorcontrib>Sundaram, Shankar</creatorcontrib><creatorcontrib>Krishnamoorthy, S</creatorcontrib><creatorcontrib>Przekwas, Andrzej J</creatorcontrib><creatorcontrib>Meinhart, Carl</creatorcontrib><creatorcontrib>Myszka, David G</creatorcontrib><creatorcontrib>Ricco, Antonia</creatorcontrib><creatorcontrib>Boone, Travis</creatorcontrib><creatorcontrib>Knio, Omar</creatorcontrib><creatorcontrib>Najm, Habib</creatorcontrib><creatorcontrib>STANFORD UNIV CA</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santiago, Juan G</au><au>Sundaram, Shankar</au><au>Krishnamoorthy, S</au><au>Przekwas, Andrzej J</au><au>Meinhart, Carl</au><au>Myszka, David G</au><au>Ricco, Antonia</au><au>Boone, Travis</au><au>Knio, Omar</au><au>Najm, Habib</au><aucorp>STANFORD UNIV CA</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics</btitle><date>2006-10</date><risdate>2006</risdate><abstract>The goal of this project was the development of novel on-chip assay devices and modeling capabilities to enable optimized design processes and create new methods to realize robust, field-portable microfluidic devices. The team developed, validated and commercialized new multiphysics models to the Bio-electro-mechanical systems (MEMS) community (over 50 organizations) through CFD-ACE+. The team further developed rapid (e.g., 1000x faster) biokinetics data extraction methods for antibody assays; and discovered and created models for an electrokinetic instability and used it to create 1000x faster a micromixer. The team developed a novel on-chip assay device that combines isoelectric focusing and electrophoresis to achieve a 2D assay in 1/30th of the time of a traditional system. Lastly, the team developed a method that achieved 1100x fold on-chip electrophoretic sample preconcentration which lead to an additional task focused on developing rapid sample pre-concentration methods to improve on-chip assay. The team developed new codes for eletrokinetic convective-diffusion assays with fast reaction kinetics capability. The team experimentally demonstrated million-fold sample concentration increase (three orders of magnitude improvement), using optimized isotachophoresis. The original document contains color images. Sponsored in part by the Defense Advanced Research Projects Agency (DARPA).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA459906
source DTIC Technical Reports
subjects ASSAYING
ASSAYING DEVICES
BIO-MEMS
Biochemistry
COMPUTATIONAL FLUID DYNAMICS
ELECTROKINETICS
FLUID MECHANICS
FLUIDICS
Fluidics and Fluerics
MICROARRAYS
MICROELECTROMECHANICAL SYSTEMS
MICROFLUIDICS
MICROMIXING
NUMERICAL MODELING
PE61101E
PRECONCENTRATION
PROTEOMICS
REACTION KINETICS
SAMPLE STACKING
Test Facilities, Equipment and Methods
WUAFRLE1170061
title Quantitative Developments of Biomolecular Databases, Measurement Methodology, and Comprehensive Transport Models for Bioanalytical Microfluidics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Quantitative%20Developments%20of%20Biomolecular%20Databases,%20Measurement%20Methodology,%20and%20Comprehensive%20Transport%20Models%20for%20Bioanalytical%20Microfluidics&rft.au=Santiago,%20Juan%20G&rft.aucorp=STANFORD%20UNIV%20CA&rft.date=2006-10&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA459906%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true