Effectively Using Syntax for Recognizing False Entailment

Recognizing textual entailment is a challenging problem and a fundamental component of many applications in natural language processing. We present a novel framework for recognizing textual entailment that focuses on the use of syntactic heuristics to recognize false entailment. We give a thorough a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Snow, Rion, Vanderwende, Lucy, Menezes, Arul
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Snow, Rion
Vanderwende, Lucy
Menezes, Arul
description Recognizing textual entailment is a challenging problem and a fundamental component of many applications in natural language processing. We present a novel framework for recognizing textual entailment that focuses on the use of syntactic heuristics to recognize false entailment. We give a thorough analysis of our system, which demonstrates state-of-the-art performance on a widely-used test set. Published in the Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, p33-40, Jun 2006.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA456695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA456695</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA4566953</originalsourceid><addsrcrecordid>eNrjZLB0TUtLTS7JLEvNqVQILc7MS1cIrswrSaxQSMsvUghKTc5Pz8usAgm7JeYUpyq4AuUyc3JT80p4GFjTQEK8UJqbQcbNNcTZQzelJDM5vrgkMy-1JN7RxdHE1MzM0tSYgDQAcngr5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Effectively Using Syntax for Recognizing False Entailment</title><source>DTIC Technical Reports</source><creator>Snow, Rion ; Vanderwende, Lucy ; Menezes, Arul</creator><creatorcontrib>Snow, Rion ; Vanderwende, Lucy ; Menezes, Arul ; STANFORD UNIV CA DEPT OF COMPUTER SCIENCE</creatorcontrib><description>Recognizing textual entailment is a challenging problem and a fundamental component of many applications in natural language processing. We present a novel framework for recognizing textual entailment that focuses on the use of syntactic heuristics to recognize false entailment. We give a thorough analysis of our system, which demonstrates state-of-the-art performance on a widely-used test set. Published in the Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, p33-40, Jun 2006.</description><language>eng</language><subject>FALSE ENTAILMENT ; HEURISTIC METHODS ; INFORMATION PROCESSING ; Information Science ; LEXICAL SIMILARITY ; Linguistics ; NATURAL LANGUAGE ; Operations Research ; PARAPHRASE DETECTION ; PASCAL RTE TEST SET ; PERFORMANCE(ENGINEERING) ; STATE OF THE ART ; SYNTAX</subject><creationdate>2006</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27544,27545</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA456695$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Snow, Rion</creatorcontrib><creatorcontrib>Vanderwende, Lucy</creatorcontrib><creatorcontrib>Menezes, Arul</creatorcontrib><creatorcontrib>STANFORD UNIV CA DEPT OF COMPUTER SCIENCE</creatorcontrib><title>Effectively Using Syntax for Recognizing False Entailment</title><description>Recognizing textual entailment is a challenging problem and a fundamental component of many applications in natural language processing. We present a novel framework for recognizing textual entailment that focuses on the use of syntactic heuristics to recognize false entailment. We give a thorough analysis of our system, which demonstrates state-of-the-art performance on a widely-used test set. Published in the Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, p33-40, Jun 2006.</description><subject>FALSE ENTAILMENT</subject><subject>HEURISTIC METHODS</subject><subject>INFORMATION PROCESSING</subject><subject>Information Science</subject><subject>LEXICAL SIMILARITY</subject><subject>Linguistics</subject><subject>NATURAL LANGUAGE</subject><subject>Operations Research</subject><subject>PARAPHRASE DETECTION</subject><subject>PASCAL RTE TEST SET</subject><subject>PERFORMANCE(ENGINEERING)</subject><subject>STATE OF THE ART</subject><subject>SYNTAX</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2006</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLB0TUtLTS7JLEvNqVQILc7MS1cIrswrSaxQSMsvUghKTc5Pz8usAgm7JeYUpyq4AuUyc3JT80p4GFjTQEK8UJqbQcbNNcTZQzelJDM5vrgkMy-1JN7RxdHE1MzM0tSYgDQAcngr5w</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Snow, Rion</creator><creator>Vanderwende, Lucy</creator><creator>Menezes, Arul</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>200606</creationdate><title>Effectively Using Syntax for Recognizing False Entailment</title><author>Snow, Rion ; Vanderwende, Lucy ; Menezes, Arul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA4566953</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2006</creationdate><topic>FALSE ENTAILMENT</topic><topic>HEURISTIC METHODS</topic><topic>INFORMATION PROCESSING</topic><topic>Information Science</topic><topic>LEXICAL SIMILARITY</topic><topic>Linguistics</topic><topic>NATURAL LANGUAGE</topic><topic>Operations Research</topic><topic>PARAPHRASE DETECTION</topic><topic>PASCAL RTE TEST SET</topic><topic>PERFORMANCE(ENGINEERING)</topic><topic>STATE OF THE ART</topic><topic>SYNTAX</topic><toplevel>online_resources</toplevel><creatorcontrib>Snow, Rion</creatorcontrib><creatorcontrib>Vanderwende, Lucy</creatorcontrib><creatorcontrib>Menezes, Arul</creatorcontrib><creatorcontrib>STANFORD UNIV CA DEPT OF COMPUTER SCIENCE</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Snow, Rion</au><au>Vanderwende, Lucy</au><au>Menezes, Arul</au><aucorp>STANFORD UNIV CA DEPT OF COMPUTER SCIENCE</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Effectively Using Syntax for Recognizing False Entailment</btitle><date>2006-06</date><risdate>2006</risdate><abstract>Recognizing textual entailment is a challenging problem and a fundamental component of many applications in natural language processing. We present a novel framework for recognizing textual entailment that focuses on the use of syntactic heuristics to recognize false entailment. We give a thorough analysis of our system, which demonstrates state-of-the-art performance on a widely-used test set. Published in the Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, p33-40, Jun 2006.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA456695
source DTIC Technical Reports
subjects FALSE ENTAILMENT
HEURISTIC METHODS
INFORMATION PROCESSING
Information Science
LEXICAL SIMILARITY
Linguistics
NATURAL LANGUAGE
Operations Research
PARAPHRASE DETECTION
PASCAL RTE TEST SET
PERFORMANCE(ENGINEERING)
STATE OF THE ART
SYNTAX
title Effectively Using Syntax for Recognizing False Entailment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Effectively%20Using%20Syntax%20for%20Recognizing%20False%20Entailment&rft.au=Snow,%20Rion&rft.aucorp=STANFORD%20UNIV%20CA%20DEPT%20OF%20COMPUTER%20SCIENCE&rft.date=2006-06&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA456695%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true