A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows
A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Fromm, Jacob E |
description | A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical program. Solutions are given for flows about obstacles in a channel at various Reynolds members, with emphasis given to the process of development of the Karman vortex street. |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA385038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA385038</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA3850383</originalsourceid><addsrcrecordid>eNrjZHB1VPBNLcnIT1FIyy9ScM7PLSgtycxLV_DLzysuSU1MqdRR8MxLBgoXpRYXZyblpOoohGUWJ-eXFiu45ZRmpgDJ_PJiHgbWtMSc4lReKM3NIOPmGuLsoZtSkpkcXww0MbUk3tHF0djC1MDYwpiANAChzC-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows</title><source>DTIC Technical Reports</source><creator>Fromm, Jacob E</creator><creatorcontrib>Fromm, Jacob E ; LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM</creatorcontrib><description>A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical program. Solutions are given for flows about obstacles in a channel at various Reynolds members, with emphasis given to the process of development of the Karman vortex street.</description><language>eng</language><subject>FINITE DIFFERENCE THEORY ; Fluid Mechanics ; INCOMPRESSIBLE FLOW ; KARMAN FLOW ; NONUNIFORM FLOW ; REYNOLDS NUMBER ; STABILITY ; VISCOUS FLOW ; VORTEX STREETS</subject><creationdate>1963</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27546,27547</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA385038$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fromm, Jacob E</creatorcontrib><creatorcontrib>LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM</creatorcontrib><title>A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows</title><description>A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical program. Solutions are given for flows about obstacles in a channel at various Reynolds members, with emphasis given to the process of development of the Karman vortex street.</description><subject>FINITE DIFFERENCE THEORY</subject><subject>Fluid Mechanics</subject><subject>INCOMPRESSIBLE FLOW</subject><subject>KARMAN FLOW</subject><subject>NONUNIFORM FLOW</subject><subject>REYNOLDS NUMBER</subject><subject>STABILITY</subject><subject>VISCOUS FLOW</subject><subject>VORTEX STREETS</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1963</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZHB1VPBNLcnIT1FIyy9ScM7PLSgtycxLV_DLzysuSU1MqdRR8MxLBgoXpRYXZyblpOoohGUWJ-eXFiu45ZRmpgDJ_PJiHgbWtMSc4lReKM3NIOPmGuLsoZtSkpkcXww0MbUk3tHF0djC1MDYwpiANAChzC-0</recordid><startdate>19630919</startdate><enddate>19630919</enddate><creator>Fromm, Jacob E</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>19630919</creationdate><title>A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows</title><author>Fromm, Jacob E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA3850383</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1963</creationdate><topic>FINITE DIFFERENCE THEORY</topic><topic>Fluid Mechanics</topic><topic>INCOMPRESSIBLE FLOW</topic><topic>KARMAN FLOW</topic><topic>NONUNIFORM FLOW</topic><topic>REYNOLDS NUMBER</topic><topic>STABILITY</topic><topic>VISCOUS FLOW</topic><topic>VORTEX STREETS</topic><toplevel>online_resources</toplevel><creatorcontrib>Fromm, Jacob E</creatorcontrib><creatorcontrib>LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fromm, Jacob E</au><aucorp>LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows</btitle><date>1963-09-19</date><risdate>1963</risdate><abstract>A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical program. Solutions are given for flows about obstacles in a channel at various Reynolds members, with emphasis given to the process of development of the Karman vortex street.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA385038 |
source | DTIC Technical Reports |
subjects | FINITE DIFFERENCE THEORY Fluid Mechanics INCOMPRESSIBLE FLOW KARMAN FLOW NONUNIFORM FLOW REYNOLDS NUMBER STABILITY VISCOUS FLOW VORTEX STREETS |
title | A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20Method%20for%20Computing%20Nonsteady,%20Incompressible,%20Viscous%20Fluid%20Flows&rft.au=Fromm,%20Jacob%20E&rft.aucorp=LOS%20ALAMOS%20SCIENTIFIC%20LAB%20ALBUQUERQUE%20NM&rft.date=1963-09-19&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA385038%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |