A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows

A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fromm, Jacob E
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fromm, Jacob E
description A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical program. Solutions are given for flows about obstacles in a channel at various Reynolds members, with emphasis given to the process of development of the Karman vortex street.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA385038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA385038</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA3850383</originalsourceid><addsrcrecordid>eNrjZHB1VPBNLcnIT1FIyy9ScM7PLSgtycxLV_DLzysuSU1MqdRR8MxLBgoXpRYXZyblpOoohGUWJ-eXFiu45ZRmpgDJ_PJiHgbWtMSc4lReKM3NIOPmGuLsoZtSkpkcXww0MbUk3tHF0djC1MDYwpiANAChzC-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows</title><source>DTIC Technical Reports</source><creator>Fromm, Jacob E</creator><creatorcontrib>Fromm, Jacob E ; LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM</creatorcontrib><description>A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical program. Solutions are given for flows about obstacles in a channel at various Reynolds members, with emphasis given to the process of development of the Karman vortex street.</description><language>eng</language><subject>FINITE DIFFERENCE THEORY ; Fluid Mechanics ; INCOMPRESSIBLE FLOW ; KARMAN FLOW ; NONUNIFORM FLOW ; REYNOLDS NUMBER ; STABILITY ; VISCOUS FLOW ; VORTEX STREETS</subject><creationdate>1963</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27546,27547</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA385038$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fromm, Jacob E</creatorcontrib><creatorcontrib>LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM</creatorcontrib><title>A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows</title><description>A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical program. Solutions are given for flows about obstacles in a channel at various Reynolds members, with emphasis given to the process of development of the Karman vortex street.</description><subject>FINITE DIFFERENCE THEORY</subject><subject>Fluid Mechanics</subject><subject>INCOMPRESSIBLE FLOW</subject><subject>KARMAN FLOW</subject><subject>NONUNIFORM FLOW</subject><subject>REYNOLDS NUMBER</subject><subject>STABILITY</subject><subject>VISCOUS FLOW</subject><subject>VORTEX STREETS</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1963</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZHB1VPBNLcnIT1FIyy9ScM7PLSgtycxLV_DLzysuSU1MqdRR8MxLBgoXpRYXZyblpOoohGUWJ-eXFiu45ZRmpgDJ_PJiHgbWtMSc4lReKM3NIOPmGuLsoZtSkpkcXww0MbUk3tHF0djC1MDYwpiANAChzC-0</recordid><startdate>19630919</startdate><enddate>19630919</enddate><creator>Fromm, Jacob E</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>19630919</creationdate><title>A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows</title><author>Fromm, Jacob E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA3850383</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1963</creationdate><topic>FINITE DIFFERENCE THEORY</topic><topic>Fluid Mechanics</topic><topic>INCOMPRESSIBLE FLOW</topic><topic>KARMAN FLOW</topic><topic>NONUNIFORM FLOW</topic><topic>REYNOLDS NUMBER</topic><topic>STABILITY</topic><topic>VISCOUS FLOW</topic><topic>VORTEX STREETS</topic><toplevel>online_resources</toplevel><creatorcontrib>Fromm, Jacob E</creatorcontrib><creatorcontrib>LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fromm, Jacob E</au><aucorp>LOS ALAMOS SCIENTIFIC LAB ALBUQUERQUE NM</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows</btitle><date>1963-09-19</date><risdate>1963</risdate><abstract>A detailed description is given of a method for obtaining numerical solutions to nonsteady incompressible fluid flow problems. Included are discussions of stability properties of the finite difference equations, and boundary and initial conditions appropriate to current applications of the numerical program. Solutions are given for flows about obstacles in a channel at various Reynolds members, with emphasis given to the process of development of the Karman vortex street.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA385038
source DTIC Technical Reports
subjects FINITE DIFFERENCE THEORY
Fluid Mechanics
INCOMPRESSIBLE FLOW
KARMAN FLOW
NONUNIFORM FLOW
REYNOLDS NUMBER
STABILITY
VISCOUS FLOW
VORTEX STREETS
title A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20Method%20for%20Computing%20Nonsteady,%20Incompressible,%20Viscous%20Fluid%20Flows&rft.au=Fromm,%20Jacob%20E&rft.aucorp=LOS%20ALAMOS%20SCIENTIFIC%20LAB%20ALBUQUERQUE%20NM&rft.date=1963-09-19&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA385038%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true