Development of Shrouded Turbojet to Form a Turboramjet for Future Missile Applications

Development of shroud to form part of an afterburner for a turbo-ramjet engine which has a possible application for high speed long range missile applications. Research has been conducted on scram-jet engines with little or no emphasis on a turbojet/ramjet combined cycle engines. With the possibilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: AL-Namani, Suleiman M
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of shroud to form part of an afterburner for a turbo-ramjet engine which has a possible application for high speed long range missile applications. Research has been conducted on scram-jet engines with little or no emphasis on a turbojet/ramjet combined cycle engines. With the possibility of the turbojet providing the thrust at subsonic conditions and the ramjet providing the thrust at supersonic conditions. A small turbojet engine, the Sophia J450 was evaluated experimentally and the results were compared to the prediction using an industry standard program with a perfect comparison over a wide operating range. In order to study possible turbo-ramjet configurations, a Sophia J450 turbojet engine was used with varying shroud configurations, to compare static thrust and specific fuel consumption measured in a test rig. Shroud pressures were also recorded to determine the entrainment rate of the ducts. The short shroud results were found to produce the best performance of the three configurations tested, which were more significant at lower engine spool speed that produced a sharp increase in secondary entrainment pressure. A conical supersonic intake was designed for combined cycle engine at a Mach 2 flight condition resulting in a near optimum cone angle of 15 (deg) to be tested in the new free jet facility. The flight envelope of the baseline engine was also determined over a wide range of flight speeds and operating altitudes.