Growth of Single Crystal Beta Silicon Carbide

Beta-SiC is a promising, wide bandgap material for high power electronic devices capable of operation at high temperatures. Its high saturation velocity, high breakdown electric field, and high thermal conductivity point to superior performance for high frequency applications. The successful fabrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yoo, Kee-Chang, Ruderman, Warren
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yoo, Kee-Chang
Ruderman, Warren
description Beta-SiC is a promising, wide bandgap material for high power electronic devices capable of operation at high temperatures. Its high saturation velocity, high breakdown electric field, and high thermal conductivity point to superior performance for high frequency applications. The successful fabrication of Beta-SiC devices requires high quality films to be epitaxially grown on lattice-matched substrate materials. Single crystals of Beta-SiC offer the optimum substrate material for lattice matching. The major problem to be overcome in the growth of large single crystals of Beta-SiC is polytype alpha-SiC formation. Cubic Beta-SiC crystallizes only below 2000 deg C. Above this temperature, SiC undergoes a phase transformation from the Beta-to the alpha-phase. In Phase I, we investigated two crystal growth techniques: sublimation and gas-vapor transport. We were able to grow small 3C-SiC crystals by both methods. Original contains color plates: All DTIC and NTIS reproductions will be in black and white.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA277050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA277050</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA2770503</originalsourceid><addsrcrecordid>eNrjZNB1L8ovL8lQyE9TCM7MS89JVXAuqiwuScxRcEotSQSK5WQm5-cpOCcWJWWmpPIwsKYl5hSn8kJpbgYZN9cQZw_dlJLM5Pjiksy81JJ4RxdHI3NzA1MDYwLSANiIJoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Growth of Single Crystal Beta Silicon Carbide</title><source>DTIC Technical Reports</source><creator>Yoo, Kee-Chang ; Ruderman, Warren</creator><creatorcontrib>Yoo, Kee-Chang ; Ruderman, Warren ; INRAD INC NORTHVALE NJ</creatorcontrib><description>Beta-SiC is a promising, wide bandgap material for high power electronic devices capable of operation at high temperatures. Its high saturation velocity, high breakdown electric field, and high thermal conductivity point to superior performance for high frequency applications. The successful fabrication of Beta-SiC devices requires high quality films to be epitaxially grown on lattice-matched substrate materials. Single crystals of Beta-SiC offer the optimum substrate material for lattice matching. The major problem to be overcome in the growth of large single crystals of Beta-SiC is polytype alpha-SiC formation. Cubic Beta-SiC crystallizes only below 2000 deg C. Above this temperature, SiC undergoes a phase transformation from the Beta-to the alpha-phase. In Phase I, we investigated two crystal growth techniques: sublimation and gas-vapor transport. We were able to grow small 3C-SiC crystals by both methods. Original contains color plates: All DTIC and NTIS reproductions will be in black and white.</description><language>eng</language><subject>BREAKDOWN(ELECTRONIC THRESHOLD) ; CARBON ; CHEMICAL VAPOR DEPOSITION ; CRYSTAL LATTICES ; Crystallography ; ELECTRIC FIELDS ; Electrical and Electronic Equipment ; Electricity and Magnetism ; ELECTRONICS ; EPITAXIAL GROWTH ; FABRICATION ; GAS-VAPOR TRANSPORT ; GENERATORS ; HIGH FREQUENCY ; HIGH POWER ; HIGH TEMPERATURE ; Inorganic Chemistry ; LATTICE MATCHING ; NAVY ; OPTICAL MATERIALS ; PHASE TRANSFORMATIONS ; POWER EQUIPMENT ; SATURATION ; SEMICONDUCTORS ; SILICON CARBIDES ; SINGLE CRYSTALS ; SUBLIMATION ; SUBSTRATES ; THERMAL CONDUCTIVITY ; VELOCITY ; WIDE BANDGAP</subject><creationdate>1992</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,777,882,27548,27549</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA277050$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yoo, Kee-Chang</creatorcontrib><creatorcontrib>Ruderman, Warren</creatorcontrib><creatorcontrib>INRAD INC NORTHVALE NJ</creatorcontrib><title>Growth of Single Crystal Beta Silicon Carbide</title><description>Beta-SiC is a promising, wide bandgap material for high power electronic devices capable of operation at high temperatures. Its high saturation velocity, high breakdown electric field, and high thermal conductivity point to superior performance for high frequency applications. The successful fabrication of Beta-SiC devices requires high quality films to be epitaxially grown on lattice-matched substrate materials. Single crystals of Beta-SiC offer the optimum substrate material for lattice matching. The major problem to be overcome in the growth of large single crystals of Beta-SiC is polytype alpha-SiC formation. Cubic Beta-SiC crystallizes only below 2000 deg C. Above this temperature, SiC undergoes a phase transformation from the Beta-to the alpha-phase. In Phase I, we investigated two crystal growth techniques: sublimation and gas-vapor transport. We were able to grow small 3C-SiC crystals by both methods. Original contains color plates: All DTIC and NTIS reproductions will be in black and white.</description><subject>BREAKDOWN(ELECTRONIC THRESHOLD)</subject><subject>CARBON</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>CRYSTAL LATTICES</subject><subject>Crystallography</subject><subject>ELECTRIC FIELDS</subject><subject>Electrical and Electronic Equipment</subject><subject>Electricity and Magnetism</subject><subject>ELECTRONICS</subject><subject>EPITAXIAL GROWTH</subject><subject>FABRICATION</subject><subject>GAS-VAPOR TRANSPORT</subject><subject>GENERATORS</subject><subject>HIGH FREQUENCY</subject><subject>HIGH POWER</subject><subject>HIGH TEMPERATURE</subject><subject>Inorganic Chemistry</subject><subject>LATTICE MATCHING</subject><subject>NAVY</subject><subject>OPTICAL MATERIALS</subject><subject>PHASE TRANSFORMATIONS</subject><subject>POWER EQUIPMENT</subject><subject>SATURATION</subject><subject>SEMICONDUCTORS</subject><subject>SILICON CARBIDES</subject><subject>SINGLE CRYSTALS</subject><subject>SUBLIMATION</subject><subject>SUBSTRATES</subject><subject>THERMAL CONDUCTIVITY</subject><subject>VELOCITY</subject><subject>WIDE BANDGAP</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1992</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZNB1L8ovL8lQyE9TCM7MS89JVXAuqiwuScxRcEotSQSK5WQm5-cpOCcWJWWmpPIwsKYl5hSn8kJpbgYZN9cQZw_dlJLM5Pjiksy81JJ4RxdHI3NzA1MDYwLSANiIJoU</recordid><startdate>199212</startdate><enddate>199212</enddate><creator>Yoo, Kee-Chang</creator><creator>Ruderman, Warren</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>199212</creationdate><title>Growth of Single Crystal Beta Silicon Carbide</title><author>Yoo, Kee-Chang ; Ruderman, Warren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA2770503</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1992</creationdate><topic>BREAKDOWN(ELECTRONIC THRESHOLD)</topic><topic>CARBON</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>CRYSTAL LATTICES</topic><topic>Crystallography</topic><topic>ELECTRIC FIELDS</topic><topic>Electrical and Electronic Equipment</topic><topic>Electricity and Magnetism</topic><topic>ELECTRONICS</topic><topic>EPITAXIAL GROWTH</topic><topic>FABRICATION</topic><topic>GAS-VAPOR TRANSPORT</topic><topic>GENERATORS</topic><topic>HIGH FREQUENCY</topic><topic>HIGH POWER</topic><topic>HIGH TEMPERATURE</topic><topic>Inorganic Chemistry</topic><topic>LATTICE MATCHING</topic><topic>NAVY</topic><topic>OPTICAL MATERIALS</topic><topic>PHASE TRANSFORMATIONS</topic><topic>POWER EQUIPMENT</topic><topic>SATURATION</topic><topic>SEMICONDUCTORS</topic><topic>SILICON CARBIDES</topic><topic>SINGLE CRYSTALS</topic><topic>SUBLIMATION</topic><topic>SUBSTRATES</topic><topic>THERMAL CONDUCTIVITY</topic><topic>VELOCITY</topic><topic>WIDE BANDGAP</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Kee-Chang</creatorcontrib><creatorcontrib>Ruderman, Warren</creatorcontrib><creatorcontrib>INRAD INC NORTHVALE NJ</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoo, Kee-Chang</au><au>Ruderman, Warren</au><aucorp>INRAD INC NORTHVALE NJ</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Growth of Single Crystal Beta Silicon Carbide</btitle><date>1992-12</date><risdate>1992</risdate><abstract>Beta-SiC is a promising, wide bandgap material for high power electronic devices capable of operation at high temperatures. Its high saturation velocity, high breakdown electric field, and high thermal conductivity point to superior performance for high frequency applications. The successful fabrication of Beta-SiC devices requires high quality films to be epitaxially grown on lattice-matched substrate materials. Single crystals of Beta-SiC offer the optimum substrate material for lattice matching. The major problem to be overcome in the growth of large single crystals of Beta-SiC is polytype alpha-SiC formation. Cubic Beta-SiC crystallizes only below 2000 deg C. Above this temperature, SiC undergoes a phase transformation from the Beta-to the alpha-phase. In Phase I, we investigated two crystal growth techniques: sublimation and gas-vapor transport. We were able to grow small 3C-SiC crystals by both methods. Original contains color plates: All DTIC and NTIS reproductions will be in black and white.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA277050
source DTIC Technical Reports
subjects BREAKDOWN(ELECTRONIC THRESHOLD)
CARBON
CHEMICAL VAPOR DEPOSITION
CRYSTAL LATTICES
Crystallography
ELECTRIC FIELDS
Electrical and Electronic Equipment
Electricity and Magnetism
ELECTRONICS
EPITAXIAL GROWTH
FABRICATION
GAS-VAPOR TRANSPORT
GENERATORS
HIGH FREQUENCY
HIGH POWER
HIGH TEMPERATURE
Inorganic Chemistry
LATTICE MATCHING
NAVY
OPTICAL MATERIALS
PHASE TRANSFORMATIONS
POWER EQUIPMENT
SATURATION
SEMICONDUCTORS
SILICON CARBIDES
SINGLE CRYSTALS
SUBLIMATION
SUBSTRATES
THERMAL CONDUCTIVITY
VELOCITY
WIDE BANDGAP
title Growth of Single Crystal Beta Silicon Carbide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Growth%20of%20Single%20Crystal%20Beta%20Silicon%20Carbide&rft.au=Yoo,%20Kee-Chang&rft.aucorp=INRAD%20INC%20NORTHVALE%20NJ&rft.date=1992-12&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA277050%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true