Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3

A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Babuska, Ivo, Von Petersdorff, T, Andersson, B
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Babuska, Ivo
Von Petersdorff, T
Andersson, B
description A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the error of the solution measured in the energy norm. Numerical examples are given
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA260107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA260107</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA2601073</originalsourceid><addsrcrecordid>eNqFyj0KwkAQQOE0FqLewGIuIEQDWvuToKAiKmll3Ex0YDOru7MQW09uob3VK77XTd772JBngxbOnlAbEgVXQ0leqYUTyy1a9KxMAVAq2IiSBNYXFGjU-QC187DjlipYuCgV-heUaCPBwburpeZ76J1giw-LhiB_RlR2AixwzPpJp0YbaPBrLxkW-Xm5HlXK5hKUhfQyX80n03SczrI__AG5RkY6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3</title><source>DTIC Technical Reports</source><creator>Babuska, Ivo ; Von Petersdorff, T ; Andersson, B</creator><creatorcontrib>Babuska, Ivo ; Von Petersdorff, T ; Andersson, B ; MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY</creatorcontrib><description>A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the error of the solution measured in the energy norm. Numerical examples are given</description><language>eng</language><subject>ACCURACY ; BOUNDARY VALUE PROBLEMS ; COMPUTATIONS ; ENERGY ; ERRORS ; ESTIMATES ; FINITE ELEMENT ANALYSIS ; Fluid Mechanics ; INTENSITY ; LAPLACE EQUATION ; MESH ; PARTIAL DIFFERENTIAL EQUATIONS ; POLYHEDRONS ; Statistics and Probability ; STRUCTURAL MECHANICS</subject><creationdate>1992</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27566,27567</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA260107$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Babuska, Ivo</creatorcontrib><creatorcontrib>Von Petersdorff, T</creatorcontrib><creatorcontrib>Andersson, B</creatorcontrib><creatorcontrib>MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY</creatorcontrib><title>Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3</title><description>A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the error of the solution measured in the energy norm. Numerical examples are given</description><subject>ACCURACY</subject><subject>BOUNDARY VALUE PROBLEMS</subject><subject>COMPUTATIONS</subject><subject>ENERGY</subject><subject>ERRORS</subject><subject>ESTIMATES</subject><subject>FINITE ELEMENT ANALYSIS</subject><subject>Fluid Mechanics</subject><subject>INTENSITY</subject><subject>LAPLACE EQUATION</subject><subject>MESH</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>POLYHEDRONS</subject><subject>Statistics and Probability</subject><subject>STRUCTURAL MECHANICS</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1992</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFyj0KwkAQQOE0FqLewGIuIEQDWvuToKAiKmll3Ex0YDOru7MQW09uob3VK77XTd772JBngxbOnlAbEgVXQ0leqYUTyy1a9KxMAVAq2IiSBNYXFGjU-QC187DjlipYuCgV-heUaCPBwburpeZ76J1giw-LhiB_RlR2AixwzPpJp0YbaPBrLxkW-Xm5HlXK5hKUhfQyX80n03SczrI__AG5RkY6</recordid><startdate>199210</startdate><enddate>199210</enddate><creator>Babuska, Ivo</creator><creator>Von Petersdorff, T</creator><creator>Andersson, B</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>199210</creationdate><title>Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3</title><author>Babuska, Ivo ; Von Petersdorff, T ; Andersson, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA2601073</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1992</creationdate><topic>ACCURACY</topic><topic>BOUNDARY VALUE PROBLEMS</topic><topic>COMPUTATIONS</topic><topic>ENERGY</topic><topic>ERRORS</topic><topic>ESTIMATES</topic><topic>FINITE ELEMENT ANALYSIS</topic><topic>Fluid Mechanics</topic><topic>INTENSITY</topic><topic>LAPLACE EQUATION</topic><topic>MESH</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>POLYHEDRONS</topic><topic>Statistics and Probability</topic><topic>STRUCTURAL MECHANICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Babuska, Ivo</creatorcontrib><creatorcontrib>Von Petersdorff, T</creatorcontrib><creatorcontrib>Andersson, B</creatorcontrib><creatorcontrib>MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Babuska, Ivo</au><au>Von Petersdorff, T</au><au>Andersson, B</au><aucorp>MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3</btitle><date>1992-10</date><risdate>1992</risdate><abstract>A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the error of the solution measured in the energy norm. Numerical examples are given</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA260107
source DTIC Technical Reports
subjects ACCURACY
BOUNDARY VALUE PROBLEMS
COMPUTATIONS
ENERGY
ERRORS
ESTIMATES
FINITE ELEMENT ANALYSIS
Fluid Mechanics
INTENSITY
LAPLACE EQUATION
MESH
PARTIAL DIFFERENTIAL EQUATIONS
POLYHEDRONS
Statistics and Probability
STRUCTURAL MECHANICS
title Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Numerical%20Treatment%20of%20Vertex%20Singularities%20and%20Intensity%20Factors%20for%20Mixed%20Boundary%20Value%20Problems%20for%20the%20Laplace%20Equation%20in%20R3&rft.au=Babuska,%20Ivo&rft.aucorp=MARYLAND%20UNIV%20COLLEGE%20PARK%20INST%20FOR%20PHYSICAL%20SCIENCE%20AND%20TECHNOLOGY&rft.date=1992-10&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA260107%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true