Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3
A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the e...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Babuska, Ivo Von Petersdorff, T Andersson, B |
description | A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the error of the solution measured in the energy norm. Numerical examples are given |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA260107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA260107</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA2601073</originalsourceid><addsrcrecordid>eNqFyj0KwkAQQOE0FqLewGIuIEQDWvuToKAiKmll3Ex0YDOru7MQW09uob3VK77XTd772JBngxbOnlAbEgVXQ0leqYUTyy1a9KxMAVAq2IiSBNYXFGjU-QC187DjlipYuCgV-heUaCPBwburpeZ76J1giw-LhiB_RlR2AixwzPpJp0YbaPBrLxkW-Xm5HlXK5hKUhfQyX80n03SczrI__AG5RkY6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3</title><source>DTIC Technical Reports</source><creator>Babuska, Ivo ; Von Petersdorff, T ; Andersson, B</creator><creatorcontrib>Babuska, Ivo ; Von Petersdorff, T ; Andersson, B ; MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY</creatorcontrib><description>A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the error of the solution measured in the energy norm. Numerical examples are given</description><language>eng</language><subject>ACCURACY ; BOUNDARY VALUE PROBLEMS ; COMPUTATIONS ; ENERGY ; ERRORS ; ESTIMATES ; FINITE ELEMENT ANALYSIS ; Fluid Mechanics ; INTENSITY ; LAPLACE EQUATION ; MESH ; PARTIAL DIFFERENTIAL EQUATIONS ; POLYHEDRONS ; Statistics and Probability ; STRUCTURAL MECHANICS</subject><creationdate>1992</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27566,27567</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA260107$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Babuska, Ivo</creatorcontrib><creatorcontrib>Von Petersdorff, T</creatorcontrib><creatorcontrib>Andersson, B</creatorcontrib><creatorcontrib>MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY</creatorcontrib><title>Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3</title><description>A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the error of the solution measured in the energy norm. Numerical examples are given</description><subject>ACCURACY</subject><subject>BOUNDARY VALUE PROBLEMS</subject><subject>COMPUTATIONS</subject><subject>ENERGY</subject><subject>ERRORS</subject><subject>ESTIMATES</subject><subject>FINITE ELEMENT ANALYSIS</subject><subject>Fluid Mechanics</subject><subject>INTENSITY</subject><subject>LAPLACE EQUATION</subject><subject>MESH</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>POLYHEDRONS</subject><subject>Statistics and Probability</subject><subject>STRUCTURAL MECHANICS</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1992</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFyj0KwkAQQOE0FqLewGIuIEQDWvuToKAiKmll3Ex0YDOru7MQW09uob3VK77XTd772JBngxbOnlAbEgVXQ0leqYUTyy1a9KxMAVAq2IiSBNYXFGjU-QC187DjlipYuCgV-heUaCPBwburpeZ76J1giw-LhiB_RlR2AixwzPpJp0YbaPBrLxkW-Xm5HlXK5hKUhfQyX80n03SczrI__AG5RkY6</recordid><startdate>199210</startdate><enddate>199210</enddate><creator>Babuska, Ivo</creator><creator>Von Petersdorff, T</creator><creator>Andersson, B</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>199210</creationdate><title>Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3</title><author>Babuska, Ivo ; Von Petersdorff, T ; Andersson, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA2601073</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1992</creationdate><topic>ACCURACY</topic><topic>BOUNDARY VALUE PROBLEMS</topic><topic>COMPUTATIONS</topic><topic>ENERGY</topic><topic>ERRORS</topic><topic>ESTIMATES</topic><topic>FINITE ELEMENT ANALYSIS</topic><topic>Fluid Mechanics</topic><topic>INTENSITY</topic><topic>LAPLACE EQUATION</topic><topic>MESH</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>POLYHEDRONS</topic><topic>Statistics and Probability</topic><topic>STRUCTURAL MECHANICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Babuska, Ivo</creatorcontrib><creatorcontrib>Von Petersdorff, T</creatorcontrib><creatorcontrib>Andersson, B</creatorcontrib><creatorcontrib>MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Babuska, Ivo</au><au>Von Petersdorff, T</au><au>Andersson, B</au><aucorp>MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3</btitle><date>1992-10</date><risdate>1992</risdate><abstract>A numerical method for the computation of the singular behavior of the solution of the Laplace equation is proposed in this paper. It is shown that the accuracy of the computed stress intensity factor by the h, p and h-p versions of the finite element method has the same order as the square of the error of the solution measured in the energy norm. Numerical examples are given</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA260107 |
source | DTIC Technical Reports |
subjects | ACCURACY BOUNDARY VALUE PROBLEMS COMPUTATIONS ENERGY ERRORS ESTIMATES FINITE ELEMENT ANALYSIS Fluid Mechanics INTENSITY LAPLACE EQUATION MESH PARTIAL DIFFERENTIAL EQUATIONS POLYHEDRONS Statistics and Probability STRUCTURAL MECHANICS |
title | Numerical Treatment of Vertex Singularities and Intensity Factors for Mixed Boundary Value Problems for the Laplace Equation in R3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Numerical%20Treatment%20of%20Vertex%20Singularities%20and%20Intensity%20Factors%20for%20Mixed%20Boundary%20Value%20Problems%20for%20the%20Laplace%20Equation%20in%20R3&rft.au=Babuska,%20Ivo&rft.aucorp=MARYLAND%20UNIV%20COLLEGE%20PARK%20INST%20FOR%20PHYSICAL%20SCIENCE%20AND%20TECHNOLOGY&rft.date=1992-10&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA260107%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |