Parallel (Delta + 1) Coloring of Constant-Degree Graphs

This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goldberg,Andrew V, Plotkin,Serge A
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Goldberg,Andrew V
Plotkin,Serge A
description This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors. The algorithms use only local communication and achieve the same complexity bounds when implemented in the distributed model of parallel computation.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA176290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA176290</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA1762903</originalsourceid><addsrcrecordid>eNrjZDAPSCxKzMlJzVHQcEnNKUlU0FYw1FRwzs_JL8rMS1fITwOy84pLEvNKdF1S04tSUxXcixILMop5GFjTEnOKU3mhNDeDjJtriLOHbkpJZnJ8cUlmXmpJvKOLo6G5mZGlgTEBaQAyYykq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Parallel (Delta + 1) Coloring of Constant-Degree Graphs</title><source>DTIC Technical Reports</source><creator>Goldberg,Andrew V ; Plotkin,Serge A</creator><creatorcontrib>Goldberg,Andrew V ; Plotkin,Serge A ; MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE</creatorcontrib><description>This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors. The algorithms use only local communication and achieve the same complexity bounds when implemented in the distributed model of parallel computation.</description><language>eng</language><subject>ALGORITHMS ; COLORING ; COLORS ; COMPUTATIONS ; DISTRIBUTION ; GRAPHS ; PARALLEL ORIENTATION ; PARALLEL PROCESSING ; Theoretical Mathematics</subject><creationdate>1986</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA176290$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Goldberg,Andrew V</creatorcontrib><creatorcontrib>Plotkin,Serge A</creatorcontrib><creatorcontrib>MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE</creatorcontrib><title>Parallel (Delta + 1) Coloring of Constant-Degree Graphs</title><description>This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors. The algorithms use only local communication and achieve the same complexity bounds when implemented in the distributed model of parallel computation.</description><subject>ALGORITHMS</subject><subject>COLORING</subject><subject>COLORS</subject><subject>COMPUTATIONS</subject><subject>DISTRIBUTION</subject><subject>GRAPHS</subject><subject>PARALLEL ORIENTATION</subject><subject>PARALLEL PROCESSING</subject><subject>Theoretical Mathematics</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1986</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZDAPSCxKzMlJzVHQcEnNKUlU0FYw1FRwzs_JL8rMS1fITwOy84pLEvNKdF1S04tSUxXcixILMop5GFjTEnOKU3mhNDeDjJtriLOHbkpJZnJ8cUlmXmpJvKOLo6G5mZGlgTEBaQAyYykq</recordid><startdate>198612</startdate><enddate>198612</enddate><creator>Goldberg,Andrew V</creator><creator>Plotkin,Serge A</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>198612</creationdate><title>Parallel (Delta + 1) Coloring of Constant-Degree Graphs</title><author>Goldberg,Andrew V ; Plotkin,Serge A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA1762903</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1986</creationdate><topic>ALGORITHMS</topic><topic>COLORING</topic><topic>COLORS</topic><topic>COMPUTATIONS</topic><topic>DISTRIBUTION</topic><topic>GRAPHS</topic><topic>PARALLEL ORIENTATION</topic><topic>PARALLEL PROCESSING</topic><topic>Theoretical Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Goldberg,Andrew V</creatorcontrib><creatorcontrib>Plotkin,Serge A</creatorcontrib><creatorcontrib>MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goldberg,Andrew V</au><au>Plotkin,Serge A</au><aucorp>MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Parallel (Delta + 1) Coloring of Constant-Degree Graphs</btitle><date>1986-12</date><risdate>1986</risdate><abstract>This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors. The algorithms use only local communication and achieve the same complexity bounds when implemented in the distributed model of parallel computation.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA176290
source DTIC Technical Reports
subjects ALGORITHMS
COLORING
COLORS
COMPUTATIONS
DISTRIBUTION
GRAPHS
PARALLEL ORIENTATION
PARALLEL PROCESSING
Theoretical Mathematics
title Parallel (Delta + 1) Coloring of Constant-Degree Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Parallel%20(Delta%20+%201)%20Coloring%20of%20Constant-Degree%20Graphs&rft.au=Goldberg,Andrew%20V&rft.aucorp=MASSACHUSETTS%20INST%20OF%20TECH%20CAMBRIDGE%20LAB%20FOR%20COMPUTER%20SCIENCE&rft.date=1986-12&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA176290%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true