Parallel (Delta + 1) Coloring of Constant-Degree Graphs
This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Goldberg,Andrew V Plotkin,Serge A |
description | This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors. The algorithms use only local communication and achieve the same complexity bounds when implemented in the distributed model of parallel computation. |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA176290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA176290</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA1762903</originalsourceid><addsrcrecordid>eNrjZDAPSCxKzMlJzVHQcEnNKUlU0FYw1FRwzs_JL8rMS1fITwOy84pLEvNKdF1S04tSUxXcixILMop5GFjTEnOKU3mhNDeDjJtriLOHbkpJZnJ8cUlmXmpJvKOLo6G5mZGlgTEBaQAyYykq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Parallel (Delta + 1) Coloring of Constant-Degree Graphs</title><source>DTIC Technical Reports</source><creator>Goldberg,Andrew V ; Plotkin,Serge A</creator><creatorcontrib>Goldberg,Andrew V ; Plotkin,Serge A ; MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE</creatorcontrib><description>This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors. The algorithms use only local communication and achieve the same complexity bounds when implemented in the distributed model of parallel computation.</description><language>eng</language><subject>ALGORITHMS ; COLORING ; COLORS ; COMPUTATIONS ; DISTRIBUTION ; GRAPHS ; PARALLEL ORIENTATION ; PARALLEL PROCESSING ; Theoretical Mathematics</subject><creationdate>1986</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA176290$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Goldberg,Andrew V</creatorcontrib><creatorcontrib>Plotkin,Serge A</creatorcontrib><creatorcontrib>MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE</creatorcontrib><title>Parallel (Delta + 1) Coloring of Constant-Degree Graphs</title><description>This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors. The algorithms use only local communication and achieve the same complexity bounds when implemented in the distributed model of parallel computation.</description><subject>ALGORITHMS</subject><subject>COLORING</subject><subject>COLORS</subject><subject>COMPUTATIONS</subject><subject>DISTRIBUTION</subject><subject>GRAPHS</subject><subject>PARALLEL ORIENTATION</subject><subject>PARALLEL PROCESSING</subject><subject>Theoretical Mathematics</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1986</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZDAPSCxKzMlJzVHQcEnNKUlU0FYw1FRwzs_JL8rMS1fITwOy84pLEvNKdF1S04tSUxXcixILMop5GFjTEnOKU3mhNDeDjJtriLOHbkpJZnJ8cUlmXmpJvKOLo6G5mZGlgTEBaQAyYykq</recordid><startdate>198612</startdate><enddate>198612</enddate><creator>Goldberg,Andrew V</creator><creator>Plotkin,Serge A</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>198612</creationdate><title>Parallel (Delta + 1) Coloring of Constant-Degree Graphs</title><author>Goldberg,Andrew V ; Plotkin,Serge A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA1762903</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1986</creationdate><topic>ALGORITHMS</topic><topic>COLORING</topic><topic>COLORS</topic><topic>COMPUTATIONS</topic><topic>DISTRIBUTION</topic><topic>GRAPHS</topic><topic>PARALLEL ORIENTATION</topic><topic>PARALLEL PROCESSING</topic><topic>Theoretical Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Goldberg,Andrew V</creatorcontrib><creatorcontrib>Plotkin,Serge A</creatorcontrib><creatorcontrib>MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goldberg,Andrew V</au><au>Plotkin,Serge A</au><aucorp>MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Parallel (Delta + 1) Coloring of Constant-Degree Graphs</btitle><date>1986-12</date><risdate>1986</risdate><abstract>This paper presents parallel algorithms for coloring a constant-degree graph with a maximum degree of delta in (delta + 1) colors and for finding a maximal independent set in a constant-degree graph. Given a graph with n vertices, the algorithms run in O (lg*n) time on EREW PRAM with O(n) processors. The algorithms use only local communication and achieve the same complexity bounds when implemented in the distributed model of parallel computation.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA176290 |
source | DTIC Technical Reports |
subjects | ALGORITHMS COLORING COLORS COMPUTATIONS DISTRIBUTION GRAPHS PARALLEL ORIENTATION PARALLEL PROCESSING Theoretical Mathematics |
title | Parallel (Delta + 1) Coloring of Constant-Degree Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Parallel%20(Delta%20+%201)%20Coloring%20of%20Constant-Degree%20Graphs&rft.au=Goldberg,Andrew%20V&rft.aucorp=MASSACHUSETTS%20INST%20OF%20TECH%20CAMBRIDGE%20LAB%20FOR%20COMPUTER%20SCIENCE&rft.date=1986-12&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA176290%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |