Working with and Visualizing Big Data Efficiently with Python for the DARPA XDATA Program
Research performed under the XDATA program focused on computational techniques and software tools for analyzing large volumes of data, both semi-structured (e.g. tabular, relational, categorical, meta-data) and unstructured (e.g. text, documents, message traffic). Several open source project which h...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Oliphant,Travis Wang,Peter Seibert,Stan Rocklin,Matthew Van de Ven,Bryan Sparra,Hunt |
description | Research performed under the XDATA program focused on computational techniques and software tools for analyzing large volumes of data, both semi-structured (e.g. tabular, relational, categorical, meta-data) and unstructured (e.g. text, documents, message traffic). Several open source project which have seen community and industry adoption grew out of this effort. - Blaze: A collection packages for describing and accessing, and manipulating disparate data sources and types - Numba: A just-in-time function compiler for Python, based on LLVM compiler project allowing researchers to run their Python code near native speeds on CPUs and GPUs. - Dask: Parallelizes generic Python and extends NumPy, Pandas, and Scikit-learn with parallel variants. -Bokeh: Create interactive web applications from Python without having to know Javascript, CSS, or HTML. |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD1038470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD1038470</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD10384703</originalsourceid><addsrcrecordid>eNrjZIgMzy_KzsxLVyjPLMlQSMxLUQjLLC5NzMmsAgk6ZaYruCSWJCq4pqVlJmem5pXkVEJUBlSWZOTnKaTlFymUZKQquDgGBTgqRLg4hjgqBBTlpxcl5vIwsKYl5hSn8kJpbgYZN9cQZw_dlJLM5Pjiksy81JJ4RxdDA2MLE3MDYwLSANW1NcM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Working with and Visualizing Big Data Efficiently with Python for the DARPA XDATA Program</title><source>DTIC Technical Reports</source><creator>Oliphant,Travis ; Wang,Peter ; Seibert,Stan ; Rocklin,Matthew ; Van de Ven,Bryan ; Sparra,Hunt</creator><creatorcontrib>Oliphant,Travis ; Wang,Peter ; Seibert,Stan ; Rocklin,Matthew ; Van de Ven,Bryan ; Sparra,Hunt ; Continuum Analytics, Inc. Austin United States</creatorcontrib><description>Research performed under the XDATA program focused on computational techniques and software tools for analyzing large volumes of data, both semi-structured (e.g. tabular, relational, categorical, meta-data) and unstructured (e.g. text, documents, message traffic). Several open source project which have seen community and industry adoption grew out of this effort. - Blaze: A collection packages for describing and accessing, and manipulating disparate data sources and types - Numba: A just-in-time function compiler for Python, based on LLVM compiler project allowing researchers to run their Python code near native speeds on CPUs and GPUs. - Dask: Parallelizes generic Python and extends NumPy, Pandas, and Scikit-learn with parallel variants. -Bokeh: Create interactive web applications from Python without having to know Javascript, CSS, or HTML.</description><language>eng</language><subject>algorithms ; Big Data ; CLUSTERING ; computer program documentation ; computer programming ; Computer Programming and Software ; DATA VISUALIZATION ; high performance computing ; information systems ; InteractivE ; machine learning ; PYTHON PROGRAMMING LANGUAGE ; SOFTWARE TOOLS ; web applications ; workload</subject><creationdate>2017</creationdate><rights>Approved For Public Release</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27544,27545</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD1038470$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Oliphant,Travis</creatorcontrib><creatorcontrib>Wang,Peter</creatorcontrib><creatorcontrib>Seibert,Stan</creatorcontrib><creatorcontrib>Rocklin,Matthew</creatorcontrib><creatorcontrib>Van de Ven,Bryan</creatorcontrib><creatorcontrib>Sparra,Hunt</creatorcontrib><creatorcontrib>Continuum Analytics, Inc. Austin United States</creatorcontrib><title>Working with and Visualizing Big Data Efficiently with Python for the DARPA XDATA Program</title><description>Research performed under the XDATA program focused on computational techniques and software tools for analyzing large volumes of data, both semi-structured (e.g. tabular, relational, categorical, meta-data) and unstructured (e.g. text, documents, message traffic). Several open source project which have seen community and industry adoption grew out of this effort. - Blaze: A collection packages for describing and accessing, and manipulating disparate data sources and types - Numba: A just-in-time function compiler for Python, based on LLVM compiler project allowing researchers to run their Python code near native speeds on CPUs and GPUs. - Dask: Parallelizes generic Python and extends NumPy, Pandas, and Scikit-learn with parallel variants. -Bokeh: Create interactive web applications from Python without having to know Javascript, CSS, or HTML.</description><subject>algorithms</subject><subject>Big Data</subject><subject>CLUSTERING</subject><subject>computer program documentation</subject><subject>computer programming</subject><subject>Computer Programming and Software</subject><subject>DATA VISUALIZATION</subject><subject>high performance computing</subject><subject>information systems</subject><subject>InteractivE</subject><subject>machine learning</subject><subject>PYTHON PROGRAMMING LANGUAGE</subject><subject>SOFTWARE TOOLS</subject><subject>web applications</subject><subject>workload</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2017</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZIgMzy_KzsxLVyjPLMlQSMxLUQjLLC5NzMmsAgk6ZaYruCSWJCq4pqVlJmem5pXkVEJUBlSWZOTnKaTlFymUZKQquDgGBTgqRLg4hjgqBBTlpxcl5vIwsKYl5hSn8kJpbgYZN9cQZw_dlJLM5Pjiksy81JJ4RxdDA2MLE3MDYwLSANW1NcM</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Oliphant,Travis</creator><creator>Wang,Peter</creator><creator>Seibert,Stan</creator><creator>Rocklin,Matthew</creator><creator>Van de Ven,Bryan</creator><creator>Sparra,Hunt</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20170801</creationdate><title>Working with and Visualizing Big Data Efficiently with Python for the DARPA XDATA Program</title><author>Oliphant,Travis ; Wang,Peter ; Seibert,Stan ; Rocklin,Matthew ; Van de Ven,Bryan ; Sparra,Hunt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD10384703</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2017</creationdate><topic>algorithms</topic><topic>Big Data</topic><topic>CLUSTERING</topic><topic>computer program documentation</topic><topic>computer programming</topic><topic>Computer Programming and Software</topic><topic>DATA VISUALIZATION</topic><topic>high performance computing</topic><topic>information systems</topic><topic>InteractivE</topic><topic>machine learning</topic><topic>PYTHON PROGRAMMING LANGUAGE</topic><topic>SOFTWARE TOOLS</topic><topic>web applications</topic><topic>workload</topic><toplevel>online_resources</toplevel><creatorcontrib>Oliphant,Travis</creatorcontrib><creatorcontrib>Wang,Peter</creatorcontrib><creatorcontrib>Seibert,Stan</creatorcontrib><creatorcontrib>Rocklin,Matthew</creatorcontrib><creatorcontrib>Van de Ven,Bryan</creatorcontrib><creatorcontrib>Sparra,Hunt</creatorcontrib><creatorcontrib>Continuum Analytics, Inc. Austin United States</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oliphant,Travis</au><au>Wang,Peter</au><au>Seibert,Stan</au><au>Rocklin,Matthew</au><au>Van de Ven,Bryan</au><au>Sparra,Hunt</au><aucorp>Continuum Analytics, Inc. Austin United States</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Working with and Visualizing Big Data Efficiently with Python for the DARPA XDATA Program</btitle><date>2017-08-01</date><risdate>2017</risdate><abstract>Research performed under the XDATA program focused on computational techniques and software tools for analyzing large volumes of data, both semi-structured (e.g. tabular, relational, categorical, meta-data) and unstructured (e.g. text, documents, message traffic). Several open source project which have seen community and industry adoption grew out of this effort. - Blaze: A collection packages for describing and accessing, and manipulating disparate data sources and types - Numba: A just-in-time function compiler for Python, based on LLVM compiler project allowing researchers to run their Python code near native speeds on CPUs and GPUs. - Dask: Parallelizes generic Python and extends NumPy, Pandas, and Scikit-learn with parallel variants. -Bokeh: Create interactive web applications from Python without having to know Javascript, CSS, or HTML.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_AD1038470 |
source | DTIC Technical Reports |
subjects | algorithms Big Data CLUSTERING computer program documentation computer programming Computer Programming and Software DATA VISUALIZATION high performance computing information systems InteractivE machine learning PYTHON PROGRAMMING LANGUAGE SOFTWARE TOOLS web applications workload |
title | Working with and Visualizing Big Data Efficiently with Python for the DARPA XDATA Program |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Working%20with%20and%20Visualizing%20Big%20Data%20Efficiently%20with%20Python%20for%20the%20DARPA%20XDATA%20Program&rft.au=Oliphant,Travis&rft.aucorp=Continuum%20Analytics,%20Inc.%20Austin%20United%20States&rft.date=2017-08-01&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD1038470%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |