K-Means Subject Matter Expert Refined Topic Model Methodology

We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Parker,Nathan, Allen,Theodore T, Sui,Zhenhuan
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Parker,Nathan
Allen,Theodore T
Sui,Zhenhuan
description We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Expert Refined Topic methodology using the Visual Basic for Applications programming language. This topic modeling software is deployable across the majority of the Department of Defense computing environments and allows analysts to develop topic models using a graphical user interface.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD1028777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD1028777</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD10287773</originalsourceid><addsrcrecordid>eNrjZLD11vVNTcwrVgguTcpKTS5R8E0sKUktUnCtKEgtKlEISk3LzEtNUQjJL8hMVvDNT0nNUfBNLcnIT8nPyU-v5GFgTUvMKU7lhdLcDDJuriHOHropJZnJ8cUlQL0l8Y4uhgZGFubm5sYEpAHaRSx3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>K-Means Subject Matter Expert Refined Topic Model Methodology</title><source>DTIC Technical Reports</source><creator>Parker,Nathan ; Allen,Theodore T ; Sui,Zhenhuan</creator><creatorcontrib>Parker,Nathan ; Allen,Theodore T ; Sui,Zhenhuan ; TRAC-Monterey Monterey United States</creatorcontrib><description>We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Expert Refined Topic methodology using the Visual Basic for Applications programming language. This topic modeling software is deployable across the majority of the Department of Defense computing environments and allows analysts to develop topic models using a graphical user interface.</description><language>eng</language><subject>clustering ; K-means ; KSMERT ; Latent Dirichlet Allocation ; LDA ; SMERT ; Subject Matter Expert Refined Topic ; Text Analysis ; Topic Models</subject><creationdate>2017</creationdate><rights>Approved For Public Release</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27544,27545</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD1028777$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Parker,Nathan</creatorcontrib><creatorcontrib>Allen,Theodore T</creatorcontrib><creatorcontrib>Sui,Zhenhuan</creatorcontrib><creatorcontrib>TRAC-Monterey Monterey United States</creatorcontrib><title>K-Means Subject Matter Expert Refined Topic Model Methodology</title><description>We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Expert Refined Topic methodology using the Visual Basic for Applications programming language. This topic modeling software is deployable across the majority of the Department of Defense computing environments and allows analysts to develop topic models using a graphical user interface.</description><subject>clustering</subject><subject>K-means</subject><subject>KSMERT</subject><subject>Latent Dirichlet Allocation</subject><subject>LDA</subject><subject>SMERT</subject><subject>Subject Matter Expert Refined Topic</subject><subject>Text Analysis</subject><subject>Topic Models</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2017</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLD11vVNTcwrVgguTcpKTS5R8E0sKUktUnCtKEgtKlEISk3LzEtNUQjJL8hMVvDNT0nNUfBNLcnIT8nPyU-v5GFgTUvMKU7lhdLcDDJuriHOHropJZnJ8cUlQL0l8Y4uhgZGFubm5sYEpAHaRSx3</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Parker,Nathan</creator><creator>Allen,Theodore T</creator><creator>Sui,Zhenhuan</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20170101</creationdate><title>K-Means Subject Matter Expert Refined Topic Model Methodology</title><author>Parker,Nathan ; Allen,Theodore T ; Sui,Zhenhuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD10287773</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2017</creationdate><topic>clustering</topic><topic>K-means</topic><topic>KSMERT</topic><topic>Latent Dirichlet Allocation</topic><topic>LDA</topic><topic>SMERT</topic><topic>Subject Matter Expert Refined Topic</topic><topic>Text Analysis</topic><topic>Topic Models</topic><toplevel>online_resources</toplevel><creatorcontrib>Parker,Nathan</creatorcontrib><creatorcontrib>Allen,Theodore T</creatorcontrib><creatorcontrib>Sui,Zhenhuan</creatorcontrib><creatorcontrib>TRAC-Monterey Monterey United States</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parker,Nathan</au><au>Allen,Theodore T</au><au>Sui,Zhenhuan</au><aucorp>TRAC-Monterey Monterey United States</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>K-Means Subject Matter Expert Refined Topic Model Methodology</btitle><date>2017-01-01</date><risdate>2017</risdate><abstract>We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Expert Refined Topic methodology using the Visual Basic for Applications programming language. This topic modeling software is deployable across the majority of the Department of Defense computing environments and allows analysts to develop topic models using a graphical user interface.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD1028777
source DTIC Technical Reports
subjects clustering
K-means
KSMERT
Latent Dirichlet Allocation
LDA
SMERT
Subject Matter Expert Refined Topic
Text Analysis
Topic Models
title K-Means Subject Matter Expert Refined Topic Model Methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=K-Means%20Subject%20Matter%20Expert%20Refined%20Topic%20Model%20Methodology&rft.au=Parker,Nathan&rft.aucorp=TRAC-Monterey%20Monterey%20United%20States&rft.date=2017-01-01&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD1028777%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true