K-Means Subject Matter Expert Refined Topic Model Methodology
We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Ex...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Parker,Nathan Allen,Theodore T Sui,Zhenhuan |
description | We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Expert Refined Topic methodology using the Visual Basic for Applications programming language. This topic modeling software is deployable across the majority of the Department of Defense computing environments and allows analysts to develop topic models using a graphical user interface. |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD1028777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD1028777</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD10287773</originalsourceid><addsrcrecordid>eNrjZLD11vVNTcwrVgguTcpKTS5R8E0sKUktUnCtKEgtKlEISk3LzEtNUQjJL8hMVvDNT0nNUfBNLcnIT8nPyU-v5GFgTUvMKU7lhdLcDDJuriHOHropJZnJ8cUlQL0l8Y4uhgZGFubm5sYEpAHaRSx3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>K-Means Subject Matter Expert Refined Topic Model Methodology</title><source>DTIC Technical Reports</source><creator>Parker,Nathan ; Allen,Theodore T ; Sui,Zhenhuan</creator><creatorcontrib>Parker,Nathan ; Allen,Theodore T ; Sui,Zhenhuan ; TRAC-Monterey Monterey United States</creatorcontrib><description>We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Expert Refined Topic methodology using the Visual Basic for Applications programming language. This topic modeling software is deployable across the majority of the Department of Defense computing environments and allows analysts to develop topic models using a graphical user interface.</description><language>eng</language><subject>clustering ; K-means ; KSMERT ; Latent Dirichlet Allocation ; LDA ; SMERT ; Subject Matter Expert Refined Topic ; Text Analysis ; Topic Models</subject><creationdate>2017</creationdate><rights>Approved For Public Release</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27544,27545</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD1028777$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Parker,Nathan</creatorcontrib><creatorcontrib>Allen,Theodore T</creatorcontrib><creatorcontrib>Sui,Zhenhuan</creatorcontrib><creatorcontrib>TRAC-Monterey Monterey United States</creatorcontrib><title>K-Means Subject Matter Expert Refined Topic Model Methodology</title><description>We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Expert Refined Topic methodology using the Visual Basic for Applications programming language. This topic modeling software is deployable across the majority of the Department of Defense computing environments and allows analysts to develop topic models using a graphical user interface.</description><subject>clustering</subject><subject>K-means</subject><subject>KSMERT</subject><subject>Latent Dirichlet Allocation</subject><subject>LDA</subject><subject>SMERT</subject><subject>Subject Matter Expert Refined Topic</subject><subject>Text Analysis</subject><subject>Topic Models</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2017</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLD11vVNTcwrVgguTcpKTS5R8E0sKUktUnCtKEgtKlEISk3LzEtNUQjJL8hMVvDNT0nNUfBNLcnIT8nPyU-v5GFgTUvMKU7lhdLcDDJuriHOHropJZnJ8cUlQL0l8Y4uhgZGFubm5sYEpAHaRSx3</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Parker,Nathan</creator><creator>Allen,Theodore T</creator><creator>Sui,Zhenhuan</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20170101</creationdate><title>K-Means Subject Matter Expert Refined Topic Model Methodology</title><author>Parker,Nathan ; Allen,Theodore T ; Sui,Zhenhuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD10287773</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2017</creationdate><topic>clustering</topic><topic>K-means</topic><topic>KSMERT</topic><topic>Latent Dirichlet Allocation</topic><topic>LDA</topic><topic>SMERT</topic><topic>Subject Matter Expert Refined Topic</topic><topic>Text Analysis</topic><topic>Topic Models</topic><toplevel>online_resources</toplevel><creatorcontrib>Parker,Nathan</creatorcontrib><creatorcontrib>Allen,Theodore T</creatorcontrib><creatorcontrib>Sui,Zhenhuan</creatorcontrib><creatorcontrib>TRAC-Monterey Monterey United States</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parker,Nathan</au><au>Allen,Theodore T</au><au>Sui,Zhenhuan</au><aucorp>TRAC-Monterey Monterey United States</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>K-Means Subject Matter Expert Refined Topic Model Methodology</btitle><date>2017-01-01</date><risdate>2017</risdate><abstract>We propose an innovative technique using K-means clustering to estimate the posterior topic distributions in Latent Dirichlet topic models as an alternative to the collapsed Gibbs sampling technique. This research also develops a topic modeling software instantiation of the K-means Subject Matter Expert Refined Topic methodology using the Visual Basic for Applications programming language. This topic modeling software is deployable across the majority of the Department of Defense computing environments and allows analysts to develop topic models using a graphical user interface.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_AD1028777 |
source | DTIC Technical Reports |
subjects | clustering K-means KSMERT Latent Dirichlet Allocation LDA SMERT Subject Matter Expert Refined Topic Text Analysis Topic Models |
title | K-Means Subject Matter Expert Refined Topic Model Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=K-Means%20Subject%20Matter%20Expert%20Refined%20Topic%20Model%20Methodology&rft.au=Parker,Nathan&rft.aucorp=TRAC-Monterey%20Monterey%20United%20States&rft.date=2017-01-01&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD1028777%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |