Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

The objective of this project was to assess the effects of ionizing radiation on 3 classes of electromagnetic materials. The proposed approach for radiation detection was to utilize radiation-induced changes in dielectric permittivity, magnetic permeability, or electrical conductivity and monitor th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McCloy,John S, Jones,A M, Kelly,James F, Riley,Brian J, Jiang,Weilin, McMakin,Doug
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator McCloy,John S
Jones,A M
Kelly,James F
Riley,Brian J
Jiang,Weilin
McMakin,Doug
description The objective of this project was to assess the effects of ionizing radiation on 3 classes of electromagnetic materials. The proposed approach for radiation detection was to utilize radiation-induced changes in dielectric permittivity, magnetic permeability, or electrical conductivity and monitor these changes with resonant cavities. Microwaves would be used to interrogate the device. This project resulted in 11 journal publications to date, including work on radiation-sensitive glasses, ferroelectric oxides, and various magnetic materials. This project designed and built a feedback resonator that shows high sensitivity (quality factors up to 15 million) and can be wirelessly monitored at stand-off distances.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD1008287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD1008287</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD10082873</originalsourceid><addsrcrecordid>eNqFjr0KwkAQhNNYiPoGFvsCgaiFYif5QYuIBPuw5DZx4XIb7lax8tm9wt5qiplvZubJp3xPVljZDXCVF1lo0DAqi0svzjw7MlBa6tTLiIMj5Q5qVPKMFvIHuoEC9OKhoVGUoCCN4UgDOgO1OFbxsfwIFbuI3LwMnkKI-Um8LpNZjzbQ6qeLZF2V9_ycmjjUhniLtD0Vmyw7bA_73R_7C7O7RVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report</title><source>DTIC Technical Reports</source><creator>McCloy,John S ; Jones,A M ; Kelly,James F ; Riley,Brian J ; Jiang,Weilin ; McMakin,Doug</creator><creatorcontrib>McCloy,John S ; Jones,A M ; Kelly,James F ; Riley,Brian J ; Jiang,Weilin ; McMakin,Doug ; Pacific Northwest National Laboratory Richland United States</creatorcontrib><description>The objective of this project was to assess the effects of ionizing radiation on 3 classes of electromagnetic materials. The proposed approach for radiation detection was to utilize radiation-induced changes in dielectric permittivity, magnetic permeability, or electrical conductivity and monitor these changes with resonant cavities. Microwaves would be used to interrogate the device. This project resulted in 11 journal publications to date, including work on radiation-sensitive glasses, ferroelectric oxides, and various magnetic materials. This project designed and built a feedback resonator that shows high sensitivity (quality factors up to 15 million) and can be wirelessly monitored at stand-off distances.</description><language>eng</language><subject>cavities ; detection ; detectors ; dielectric permittivity ; dielectrics ; electrical conductivity ; electromagnetic materials ; electromagnetic properties ; ionizing radiation ; magnetic permeability ; micorwaves ; monitoring ; permeability ; permittivity(electrical) ; radiation detection ; resonant cavities ; resonators ; sensitivity</subject><creationdate>2016</creationdate><rights>Approved For Public Release</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27544,27545</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD1008287$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>McCloy,John S</creatorcontrib><creatorcontrib>Jones,A M</creatorcontrib><creatorcontrib>Kelly,James F</creatorcontrib><creatorcontrib>Riley,Brian J</creatorcontrib><creatorcontrib>Jiang,Weilin</creatorcontrib><creatorcontrib>McMakin,Doug</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory Richland United States</creatorcontrib><title>Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report</title><description>The objective of this project was to assess the effects of ionizing radiation on 3 classes of electromagnetic materials. The proposed approach for radiation detection was to utilize radiation-induced changes in dielectric permittivity, magnetic permeability, or electrical conductivity and monitor these changes with resonant cavities. Microwaves would be used to interrogate the device. This project resulted in 11 journal publications to date, including work on radiation-sensitive glasses, ferroelectric oxides, and various magnetic materials. This project designed and built a feedback resonator that shows high sensitivity (quality factors up to 15 million) and can be wirelessly monitored at stand-off distances.</description><subject>cavities</subject><subject>detection</subject><subject>detectors</subject><subject>dielectric permittivity</subject><subject>dielectrics</subject><subject>electrical conductivity</subject><subject>electromagnetic materials</subject><subject>electromagnetic properties</subject><subject>ionizing radiation</subject><subject>magnetic permeability</subject><subject>micorwaves</subject><subject>monitoring</subject><subject>permeability</subject><subject>permittivity(electrical)</subject><subject>radiation detection</subject><subject>resonant cavities</subject><subject>resonators</subject><subject>sensitivity</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2016</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFjr0KwkAQhNNYiPoGFvsCgaiFYif5QYuIBPuw5DZx4XIb7lax8tm9wt5qiplvZubJp3xPVljZDXCVF1lo0DAqi0svzjw7MlBa6tTLiIMj5Q5qVPKMFvIHuoEC9OKhoVGUoCCN4UgDOgO1OFbxsfwIFbuI3LwMnkKI-Um8LpNZjzbQ6qeLZF2V9_ycmjjUhniLtD0Vmyw7bA_73R_7C7O7RVw</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>McCloy,John S</creator><creator>Jones,A M</creator><creator>Kelly,James F</creator><creator>Riley,Brian J</creator><creator>Jiang,Weilin</creator><creator>McMakin,Doug</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20160401</creationdate><title>Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report</title><author>McCloy,John S ; Jones,A M ; Kelly,James F ; Riley,Brian J ; Jiang,Weilin ; McMakin,Doug</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD10082873</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cavities</topic><topic>detection</topic><topic>detectors</topic><topic>dielectric permittivity</topic><topic>dielectrics</topic><topic>electrical conductivity</topic><topic>electromagnetic materials</topic><topic>electromagnetic properties</topic><topic>ionizing radiation</topic><topic>magnetic permeability</topic><topic>micorwaves</topic><topic>monitoring</topic><topic>permeability</topic><topic>permittivity(electrical)</topic><topic>radiation detection</topic><topic>resonant cavities</topic><topic>resonators</topic><topic>sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>McCloy,John S</creatorcontrib><creatorcontrib>Jones,A M</creatorcontrib><creatorcontrib>Kelly,James F</creatorcontrib><creatorcontrib>Riley,Brian J</creatorcontrib><creatorcontrib>Jiang,Weilin</creatorcontrib><creatorcontrib>McMakin,Doug</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory Richland United States</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McCloy,John S</au><au>Jones,A M</au><au>Kelly,James F</au><au>Riley,Brian J</au><au>Jiang,Weilin</au><au>McMakin,Doug</au><aucorp>Pacific Northwest National Laboratory Richland United States</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report</btitle><date>2016-04-01</date><risdate>2016</risdate><abstract>The objective of this project was to assess the effects of ionizing radiation on 3 classes of electromagnetic materials. The proposed approach for radiation detection was to utilize radiation-induced changes in dielectric permittivity, magnetic permeability, or electrical conductivity and monitor these changes with resonant cavities. Microwaves would be used to interrogate the device. This project resulted in 11 journal publications to date, including work on radiation-sensitive glasses, ferroelectric oxides, and various magnetic materials. This project designed and built a feedback resonator that shows high sensitivity (quality factors up to 15 million) and can be wirelessly monitored at stand-off distances.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD1008287
source DTIC Technical Reports
subjects cavities
detection
detectors
dielectric permittivity
dielectrics
electrical conductivity
electromagnetic materials
electromagnetic properties
ionizing radiation
magnetic permeability
micorwaves
monitoring
permeability
permittivity(electrical)
radiation detection
resonant cavities
resonators
sensitivity
title Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Exploiting%20Novel%20Radiation-Induced%20Electromagnetic%20Material%20Changes%20for%20Remote%20Detection%20and%20Monitoring:%20Final%20Progress%20Report&rft.au=McCloy,John%20S&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20Richland%20United%20States&rft.date=2016-04-01&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD1008287%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true