Ocean Current Estimation Using a Multi-Model Ensemble Kalman Filter During the Grand Lagrangian Deployment Experiment (GLAD)

In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Coelho,Emanuel F, Hogan,P, Jacobs,G, Thoppil,P, Huntley,H S, Haus,B K, Lipphardt,B Jr L, Kriwan,A Jr D, Ryan,E H, Olascoaga,J, Beron-Vera,F, Poje,A C, Griffa,A, Ozgokmen,T M, Mariano,A J, Novelli,G, Haza,A C, Bogucki,D, Chen,S S, Curcic,M
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Coelho,Emanuel F
Hogan,P
Jacobs,G
Thoppil,P
Huntley,H S
Haus,B K
Lipphardt,B Jr L
Kriwan,A Jr D
Ryan,E H
Olascoaga,J
Beron-Vera,F
Poje,A C
Griffa,A
Ozgokmen,T M
Mariano,A J
Novelli,G
Haza,A C
Bogucki,D
Chen,S S
Curcic,M
description In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they were not assimilating the drifter's observations. This work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of models, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems or ensembles are available and/or observations are not entirely handled by the operational data assimilation process. It allows using generic in situ measurements over short time windows to improve the predictability of local ocean dynamics and associated high-resolution parameters of interest for which a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive enhanced background fields for other data assimilation systems, thus providing an expedite method to non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD experiment show the method can improve water velocity predictions along the observed drifter trajectories, hence enhancing the skills of the models to predict individual trajectories. Ocean Modelling, 87, 01 Jan 0001, 01 Jan 0001,
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD1005754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD1005754</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD10057543</originalsourceid><addsrcrecordid>eNqFjjELwjAUhLs4iPoPHN6oQ6Gixbk0bQUrLjqX2D7rgyQtySso-OONxd3pDu6746bB-1yjNJAO1qJhyByTlkydgasj04KE06CYwlPXoILMONQ3hXCUSvtaTorRghjsl-UHQmGlaaCUrdeWPCKwV91Lj-PPHi2NdlWUiVjPg8ldKoeLn86CZZ5d0kPYMNWVv2KQq0Rsoijex7vtn_gDOZNC2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Ocean Current Estimation Using a Multi-Model Ensemble Kalman Filter During the Grand Lagrangian Deployment Experiment (GLAD)</title><source>DTIC Technical Reports</source><creator>Coelho,Emanuel F ; Hogan,P ; Jacobs,G ; Thoppil,P ; Huntley,H S ; Haus,B K ; Lipphardt,B Jr L ; Kriwan,A Jr D ; Ryan,E H ; Olascoaga,J ; Beron-Vera,F ; Poje,A C ; Griffa,A ; Ozgokmen,T M ; Mariano,A J ; Novelli,G ; Haza,A C ; Bogucki,D ; Chen,S S ; Curcic,M</creator><creatorcontrib>Coelho,Emanuel F ; Hogan,P ; Jacobs,G ; Thoppil,P ; Huntley,H S ; Haus,B K ; Lipphardt,B Jr L ; Kriwan,A Jr D ; Ryan,E H ; Olascoaga,J ; Beron-Vera,F ; Poje,A C ; Griffa,A ; Ozgokmen,T M ; Mariano,A J ; Novelli,G ; Haza,A C ; Bogucki,D ; Chen,S S ; Curcic,M ; NAVAL RESEARCH LAB STENNIS DETACHMENT STENNIS SPACE CENTER MS STENNIS SPACE CENTER United States</creatorcontrib><description>In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they were not assimilating the drifter's observations. This work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of models, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems or ensembles are available and/or observations are not entirely handled by the operational data assimilation process. It allows using generic in situ measurements over short time windows to improve the predictability of local ocean dynamics and associated high-resolution parameters of interest for which a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive enhanced background fields for other data assimilation systems, thus providing an expedite method to non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD experiment show the method can improve water velocity predictions along the observed drifter trajectories, hence enhancing the skills of the models to predict individual trajectories. Ocean Modelling, 87, 01 Jan 0001, 01 Jan 0001,</description><language>eng</language><subject>Data assimilation ; Ensemble forecasting ; estimates ; forecasting ; glad(Grand Lagrangian Deployment experiment) ; Kalman filtering ; kalman filters ; Lagrangian observations ; mekf (Multi-Model Ensemble Kalman Filter) ; modeling ; observation ; Ocean currents ; ocean models ; predictions ; tracking ; velocity</subject><creationdate>2014</creationdate><rights>Approved For Public Release</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,781,886,27568,27569</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD1005754$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Coelho,Emanuel F</creatorcontrib><creatorcontrib>Hogan,P</creatorcontrib><creatorcontrib>Jacobs,G</creatorcontrib><creatorcontrib>Thoppil,P</creatorcontrib><creatorcontrib>Huntley,H S</creatorcontrib><creatorcontrib>Haus,B K</creatorcontrib><creatorcontrib>Lipphardt,B Jr L</creatorcontrib><creatorcontrib>Kriwan,A Jr D</creatorcontrib><creatorcontrib>Ryan,E H</creatorcontrib><creatorcontrib>Olascoaga,J</creatorcontrib><creatorcontrib>Beron-Vera,F</creatorcontrib><creatorcontrib>Poje,A C</creatorcontrib><creatorcontrib>Griffa,A</creatorcontrib><creatorcontrib>Ozgokmen,T M</creatorcontrib><creatorcontrib>Mariano,A J</creatorcontrib><creatorcontrib>Novelli,G</creatorcontrib><creatorcontrib>Haza,A C</creatorcontrib><creatorcontrib>Bogucki,D</creatorcontrib><creatorcontrib>Chen,S S</creatorcontrib><creatorcontrib>Curcic,M</creatorcontrib><creatorcontrib>NAVAL RESEARCH LAB STENNIS DETACHMENT STENNIS SPACE CENTER MS STENNIS SPACE CENTER United States</creatorcontrib><title>Ocean Current Estimation Using a Multi-Model Ensemble Kalman Filter During the Grand Lagrangian Deployment Experiment (GLAD)</title><description>In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they were not assimilating the drifter's observations. This work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of models, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems or ensembles are available and/or observations are not entirely handled by the operational data assimilation process. It allows using generic in situ measurements over short time windows to improve the predictability of local ocean dynamics and associated high-resolution parameters of interest for which a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive enhanced background fields for other data assimilation systems, thus providing an expedite method to non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD experiment show the method can improve water velocity predictions along the observed drifter trajectories, hence enhancing the skills of the models to predict individual trajectories. Ocean Modelling, 87, 01 Jan 0001, 01 Jan 0001,</description><subject>Data assimilation</subject><subject>Ensemble forecasting</subject><subject>estimates</subject><subject>forecasting</subject><subject>glad(Grand Lagrangian Deployment experiment)</subject><subject>Kalman filtering</subject><subject>kalman filters</subject><subject>Lagrangian observations</subject><subject>mekf (Multi-Model Ensemble Kalman Filter)</subject><subject>modeling</subject><subject>observation</subject><subject>Ocean currents</subject><subject>ocean models</subject><subject>predictions</subject><subject>tracking</subject><subject>velocity</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2014</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFjjELwjAUhLs4iPoPHN6oQ6Gixbk0bQUrLjqX2D7rgyQtySso-OONxd3pDu6746bB-1yjNJAO1qJhyByTlkydgasj04KE06CYwlPXoILMONQ3hXCUSvtaTorRghjsl-UHQmGlaaCUrdeWPCKwV91Lj-PPHi2NdlWUiVjPg8ldKoeLn86CZZ5d0kPYMNWVv2KQq0Rsoijex7vtn_gDOZNC2Q</recordid><startdate>20141227</startdate><enddate>20141227</enddate><creator>Coelho,Emanuel F</creator><creator>Hogan,P</creator><creator>Jacobs,G</creator><creator>Thoppil,P</creator><creator>Huntley,H S</creator><creator>Haus,B K</creator><creator>Lipphardt,B Jr L</creator><creator>Kriwan,A Jr D</creator><creator>Ryan,E H</creator><creator>Olascoaga,J</creator><creator>Beron-Vera,F</creator><creator>Poje,A C</creator><creator>Griffa,A</creator><creator>Ozgokmen,T M</creator><creator>Mariano,A J</creator><creator>Novelli,G</creator><creator>Haza,A C</creator><creator>Bogucki,D</creator><creator>Chen,S S</creator><creator>Curcic,M</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20141227</creationdate><title>Ocean Current Estimation Using a Multi-Model Ensemble Kalman Filter During the Grand Lagrangian Deployment Experiment (GLAD)</title><author>Coelho,Emanuel F ; Hogan,P ; Jacobs,G ; Thoppil,P ; Huntley,H S ; Haus,B K ; Lipphardt,B Jr L ; Kriwan,A Jr D ; Ryan,E H ; Olascoaga,J ; Beron-Vera,F ; Poje,A C ; Griffa,A ; Ozgokmen,T M ; Mariano,A J ; Novelli,G ; Haza,A C ; Bogucki,D ; Chen,S S ; Curcic,M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD10057543</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data assimilation</topic><topic>Ensemble forecasting</topic><topic>estimates</topic><topic>forecasting</topic><topic>glad(Grand Lagrangian Deployment experiment)</topic><topic>Kalman filtering</topic><topic>kalman filters</topic><topic>Lagrangian observations</topic><topic>mekf (Multi-Model Ensemble Kalman Filter)</topic><topic>modeling</topic><topic>observation</topic><topic>Ocean currents</topic><topic>ocean models</topic><topic>predictions</topic><topic>tracking</topic><topic>velocity</topic><toplevel>online_resources</toplevel><creatorcontrib>Coelho,Emanuel F</creatorcontrib><creatorcontrib>Hogan,P</creatorcontrib><creatorcontrib>Jacobs,G</creatorcontrib><creatorcontrib>Thoppil,P</creatorcontrib><creatorcontrib>Huntley,H S</creatorcontrib><creatorcontrib>Haus,B K</creatorcontrib><creatorcontrib>Lipphardt,B Jr L</creatorcontrib><creatorcontrib>Kriwan,A Jr D</creatorcontrib><creatorcontrib>Ryan,E H</creatorcontrib><creatorcontrib>Olascoaga,J</creatorcontrib><creatorcontrib>Beron-Vera,F</creatorcontrib><creatorcontrib>Poje,A C</creatorcontrib><creatorcontrib>Griffa,A</creatorcontrib><creatorcontrib>Ozgokmen,T M</creatorcontrib><creatorcontrib>Mariano,A J</creatorcontrib><creatorcontrib>Novelli,G</creatorcontrib><creatorcontrib>Haza,A C</creatorcontrib><creatorcontrib>Bogucki,D</creatorcontrib><creatorcontrib>Chen,S S</creatorcontrib><creatorcontrib>Curcic,M</creatorcontrib><creatorcontrib>NAVAL RESEARCH LAB STENNIS DETACHMENT STENNIS SPACE CENTER MS STENNIS SPACE CENTER United States</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Coelho,Emanuel F</au><au>Hogan,P</au><au>Jacobs,G</au><au>Thoppil,P</au><au>Huntley,H S</au><au>Haus,B K</au><au>Lipphardt,B Jr L</au><au>Kriwan,A Jr D</au><au>Ryan,E H</au><au>Olascoaga,J</au><au>Beron-Vera,F</au><au>Poje,A C</au><au>Griffa,A</au><au>Ozgokmen,T M</au><au>Mariano,A J</au><au>Novelli,G</au><au>Haza,A C</au><au>Bogucki,D</au><au>Chen,S S</au><au>Curcic,M</au><aucorp>NAVAL RESEARCH LAB STENNIS DETACHMENT STENNIS SPACE CENTER MS STENNIS SPACE CENTER United States</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Ocean Current Estimation Using a Multi-Model Ensemble Kalman Filter During the Grand Lagrangian Deployment Experiment (GLAD)</btitle><date>2014-12-27</date><risdate>2014</risdate><abstract>In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they were not assimilating the drifter's observations. This work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of models, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems or ensembles are available and/or observations are not entirely handled by the operational data assimilation process. It allows using generic in situ measurements over short time windows to improve the predictability of local ocean dynamics and associated high-resolution parameters of interest for which a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive enhanced background fields for other data assimilation systems, thus providing an expedite method to non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD experiment show the method can improve water velocity predictions along the observed drifter trajectories, hence enhancing the skills of the models to predict individual trajectories. Ocean Modelling, 87, 01 Jan 0001, 01 Jan 0001,</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD1005754
source DTIC Technical Reports
subjects Data assimilation
Ensemble forecasting
estimates
forecasting
glad(Grand Lagrangian Deployment experiment)
Kalman filtering
kalman filters
Lagrangian observations
mekf (Multi-Model Ensemble Kalman Filter)
modeling
observation
Ocean currents
ocean models
predictions
tracking
velocity
title Ocean Current Estimation Using a Multi-Model Ensemble Kalman Filter During the Grand Lagrangian Deployment Experiment (GLAD)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Ocean%20Current%20Estimation%20Using%20a%20Multi-Model%20Ensemble%20Kalman%20Filter%20During%20the%20Grand%20Lagrangian%20Deployment%20Experiment%20(GLAD)&rft.au=Coelho,Emanuel%20F&rft.aucorp=NAVAL%20RESEARCH%20LAB%20STENNIS%20DETACHMENT%20STENNIS%20SPACE%20CENTER%20MS%20STENNIS%20SPACE%20CENTER%20United%20States&rft.date=2014-12-27&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD1005754%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true