A Comparison of Approaches for Solving Hard Graph-Theoretic Problems
In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However,many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Horan,Victoria Adachi,Steve Bak,Stanley |
description | In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However,many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using Matlab, a quantum annealing approach using the D-Wave computer, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers
UNKNOWN , 01 Jan 0001, 01 Jan 0001, |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD1003124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD1003124</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD10031243</originalsourceid><addsrcrecordid>eNrjZHBxVHDOzy1ILMoszs9TyE9TcCwoKMpPTM5ILVZIyy9SCM7PKcvMS1fwSCxKUXAvSizI0A3JSM0vSi3JTFYIKMpPyknNLeZhYE1LzClO5YXS3Awybq4hzh66KUBV8cUlmXmpJfGOLoYGBsaGRibGBKQBXQwvBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A Comparison of Approaches for Solving Hard Graph-Theoretic Problems</title><source>DTIC Technical Reports</source><creator>Horan,Victoria ; Adachi,Steve ; Bak,Stanley</creator><creatorcontrib>Horan,Victoria ; Adachi,Steve ; Bak,Stanley ; Air Force Research Laboratory/RITF ROME United States</creatorcontrib><description>In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However,many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using Matlab, a quantum annealing approach using the D-Wave computer, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers
UNKNOWN , 01 Jan 0001, 01 Jan 0001,</description><language>eng</language><subject>COMPUTATIONAL SCIENCE ; De Bruijn Network ; Discrete Mathematics ; Graph Theory ; graphs ; Identifying Code ; Parallel Computing ; smt(satisfiability modulo theory)</subject><creationdate>2015</creationdate><rights>Approved For Public Release</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,777,882,27548,27549</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD1003124$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Horan,Victoria</creatorcontrib><creatorcontrib>Adachi,Steve</creatorcontrib><creatorcontrib>Bak,Stanley</creatorcontrib><creatorcontrib>Air Force Research Laboratory/RITF ROME United States</creatorcontrib><title>A Comparison of Approaches for Solving Hard Graph-Theoretic Problems</title><description>In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However,many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using Matlab, a quantum annealing approach using the D-Wave computer, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers
UNKNOWN , 01 Jan 0001, 01 Jan 0001,</description><subject>COMPUTATIONAL SCIENCE</subject><subject>De Bruijn Network</subject><subject>Discrete Mathematics</subject><subject>Graph Theory</subject><subject>graphs</subject><subject>Identifying Code</subject><subject>Parallel Computing</subject><subject>smt(satisfiability modulo theory)</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2015</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZHBxVHDOzy1ILMoszs9TyE9TcCwoKMpPTM5ILVZIyy9SCM7PKcvMS1fwSCxKUXAvSizI0A3JSM0vSi3JTFYIKMpPyknNLeZhYE1LzClO5YXS3Awybq4hzh66KUBV8cUlmXmpJfGOLoYGBsaGRibGBKQBXQwvBA</recordid><startdate>20150429</startdate><enddate>20150429</enddate><creator>Horan,Victoria</creator><creator>Adachi,Steve</creator><creator>Bak,Stanley</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20150429</creationdate><title>A Comparison of Approaches for Solving Hard Graph-Theoretic Problems</title><author>Horan,Victoria ; Adachi,Steve ; Bak,Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD10031243</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2015</creationdate><topic>COMPUTATIONAL SCIENCE</topic><topic>De Bruijn Network</topic><topic>Discrete Mathematics</topic><topic>Graph Theory</topic><topic>graphs</topic><topic>Identifying Code</topic><topic>Parallel Computing</topic><topic>smt(satisfiability modulo theory)</topic><toplevel>online_resources</toplevel><creatorcontrib>Horan,Victoria</creatorcontrib><creatorcontrib>Adachi,Steve</creatorcontrib><creatorcontrib>Bak,Stanley</creatorcontrib><creatorcontrib>Air Force Research Laboratory/RITF ROME United States</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Horan,Victoria</au><au>Adachi,Steve</au><au>Bak,Stanley</au><aucorp>Air Force Research Laboratory/RITF ROME United States</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A Comparison of Approaches for Solving Hard Graph-Theoretic Problems</btitle><date>2015-04-29</date><risdate>2015</risdate><abstract>In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However,many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using Matlab, a quantum annealing approach using the D-Wave computer, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers
UNKNOWN , 01 Jan 0001, 01 Jan 0001,</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_AD1003124 |
source | DTIC Technical Reports |
subjects | COMPUTATIONAL SCIENCE De Bruijn Network Discrete Mathematics Graph Theory graphs Identifying Code Parallel Computing smt(satisfiability modulo theory) |
title | A Comparison of Approaches for Solving Hard Graph-Theoretic Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20Comparison%20of%20Approaches%20for%20Solving%20Hard%20Graph-Theoretic%20Problems&rft.au=Horan,Victoria&rft.aucorp=Air%20Force%20Research%20Laboratory/RITF%20ROME%20United%20States&rft.date=2015-04-29&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD1003124%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |