Normal Mode Computation

Newman and Thorson have recently proposed and developed a new method for the rapid and efficient solution of eigenvalue problems associated with a linear second order differential equation. Results on the application of the method to obtain the solution of Stoke's equation, the evaluation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McKisic,James Michael, Hamm,D. P
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator McKisic,James Michael
Hamm,D. P
description Newman and Thorson have recently proposed and developed a new method for the rapid and efficient solution of eigenvalue problems associated with a linear second order differential equation. Results on the application of the method to obtain the solution of Stoke's equation, the evaluation of the eigenvalue spectrum for a parabolic and Williams-Horne profile in an infinite ocean, and the solutions and eigenvalues in a semi-infinite ocean described by a positive linear gradient profile are presented. (Author)
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0787019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0787019</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD07870193</originalsourceid><addsrcrecordid>eNrjZBD3yy_KTcxR8M1PSVVwzs8tKC1JLMnMz-NhYE1LzClO5YXS3Awybq4hzh66KSWZyfHFJZl5qSXxji4G5hbmBoaWxgSkAWvvHtk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Normal Mode Computation</title><source>DTIC Technical Reports</source><creator>McKisic,James Michael ; Hamm,D. P</creator><creatorcontrib>McKisic,James Michael ; Hamm,D. P ; LOCKHEED MISSILES AND SPACE CO INC SAN DIEGO CALIF LOCKHEED OCEAN LAB</creatorcontrib><description>Newman and Thorson have recently proposed and developed a new method for the rapid and efficient solution of eigenvalue problems associated with a linear second order differential equation. Results on the application of the method to obtain the solution of Stoke's equation, the evaluation of the eigenvalue spectrum for a parabolic and Williams-Horne profile in an infinite ocean, and the solutions and eigenvalues in a semi-infinite ocean described by a positive linear gradient profile are presented. (Author)</description><language>eng</language><subject>Acoustic Detection and Detectors ; Acoustic velocity ; Acoustics ; Eigenvalues ; Eigenvectors ; Linear differential equations ; Numerical integration ; Underwater sound ; Wave equations</subject><creationdate>1974</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0787019$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>McKisic,James Michael</creatorcontrib><creatorcontrib>Hamm,D. P</creatorcontrib><creatorcontrib>LOCKHEED MISSILES AND SPACE CO INC SAN DIEGO CALIF LOCKHEED OCEAN LAB</creatorcontrib><title>Normal Mode Computation</title><description>Newman and Thorson have recently proposed and developed a new method for the rapid and efficient solution of eigenvalue problems associated with a linear second order differential equation. Results on the application of the method to obtain the solution of Stoke's equation, the evaluation of the eigenvalue spectrum for a parabolic and Williams-Horne profile in an infinite ocean, and the solutions and eigenvalues in a semi-infinite ocean described by a positive linear gradient profile are presented. (Author)</description><subject>Acoustic Detection and Detectors</subject><subject>Acoustic velocity</subject><subject>Acoustics</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Linear differential equations</subject><subject>Numerical integration</subject><subject>Underwater sound</subject><subject>Wave equations</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1974</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZBD3yy_KTcxR8M1PSVVwzs8tKC1JLMnMz-NhYE1LzClO5YXS3Awybq4hzh66KSWZyfHFJZl5qSXxji4G5hbmBoaWxgSkAWvvHtk</recordid><startdate>197410</startdate><enddate>197410</enddate><creator>McKisic,James Michael</creator><creator>Hamm,D. P</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>197410</creationdate><title>Normal Mode Computation</title><author>McKisic,James Michael ; Hamm,D. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD07870193</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1974</creationdate><topic>Acoustic Detection and Detectors</topic><topic>Acoustic velocity</topic><topic>Acoustics</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Linear differential equations</topic><topic>Numerical integration</topic><topic>Underwater sound</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>McKisic,James Michael</creatorcontrib><creatorcontrib>Hamm,D. P</creatorcontrib><creatorcontrib>LOCKHEED MISSILES AND SPACE CO INC SAN DIEGO CALIF LOCKHEED OCEAN LAB</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McKisic,James Michael</au><au>Hamm,D. P</au><aucorp>LOCKHEED MISSILES AND SPACE CO INC SAN DIEGO CALIF LOCKHEED OCEAN LAB</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Normal Mode Computation</btitle><date>1974-10</date><risdate>1974</risdate><abstract>Newman and Thorson have recently proposed and developed a new method for the rapid and efficient solution of eigenvalue problems associated with a linear second order differential equation. Results on the application of the method to obtain the solution of Stoke's equation, the evaluation of the eigenvalue spectrum for a parabolic and Williams-Horne profile in an infinite ocean, and the solutions and eigenvalues in a semi-infinite ocean described by a positive linear gradient profile are presented. (Author)</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD0787019
source DTIC Technical Reports
subjects Acoustic Detection and Detectors
Acoustic velocity
Acoustics
Eigenvalues
Eigenvectors
Linear differential equations
Numerical integration
Underwater sound
Wave equations
title Normal Mode Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Normal%20Mode%20Computation&rft.au=McKisic,James%20Michael&rft.aucorp=LOCKHEED%20MISSILES%20AND%20SPACE%20CO%20INC%20SAN%20DIEGO%20CALIF%20LOCKHEED%20OCEAN%20LAB&rft.date=1974-10&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0787019%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true