A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS

The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wilkinson,Belinda M. M
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wilkinson,Belinda M. M
description The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the roots are found, an a posteriori error analysis is performed. (Author)
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0695716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0695716</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD06957163</originalsourceid><addsrcrecordid>eNrjZLB0VAjw94l09HH3D_IM8fBVcPMPUnDz9HPx9HNXCPL3DwlW8HcDK_Hz9_V09FFwDQx1DPH09wvmYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4uBmaWpuaGZsYEpAEOECYZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS</title><source>DTIC Technical Reports</source><creator>Wilkinson,Belinda M. M</creator><creatorcontrib>Wilkinson,Belinda M. M ; TEXAS UNIV AUSTIN COMPUTATION CENTER</creatorcontrib><description>The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the roots are found, an a posteriori error analysis is performed. (Author)</description><language>eng</language><subject>ALGORITHMS ; COMPLEX NUMBERS ; Computer Programming and Software ; COMPUTER PROGRAMS ; EIGENVECTORS ; INTERPOLATION ; MATRICES(MATHEMATICS) ; NUMERICAL ANALYSIS ; POLYNOMIALS ; PROBLEM SOLVING ; ROOTS OF EQUATIONS ; THEOREMS ; Theoretical Mathematics ; THESES</subject><creationdate>1969</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0695716$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wilkinson,Belinda M. M</creatorcontrib><creatorcontrib>TEXAS UNIV AUSTIN COMPUTATION CENTER</creatorcontrib><title>A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS</title><description>The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the roots are found, an a posteriori error analysis is performed. (Author)</description><subject>ALGORITHMS</subject><subject>COMPLEX NUMBERS</subject><subject>Computer Programming and Software</subject><subject>COMPUTER PROGRAMS</subject><subject>EIGENVECTORS</subject><subject>INTERPOLATION</subject><subject>MATRICES(MATHEMATICS)</subject><subject>NUMERICAL ANALYSIS</subject><subject>POLYNOMIALS</subject><subject>PROBLEM SOLVING</subject><subject>ROOTS OF EQUATIONS</subject><subject>THEOREMS</subject><subject>Theoretical Mathematics</subject><subject>THESES</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1969</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLB0VAjw94l09HH3D_IM8fBVcPMPUnDz9HPx9HNXCPL3DwlW8HcDK_Hz9_V09FFwDQx1DPH09wvmYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4uBmaWpuaGZsYEpAEOECYZ</recordid><startdate>196908</startdate><enddate>196908</enddate><creator>Wilkinson,Belinda M. M</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>196908</creationdate><title>A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS</title><author>Wilkinson,Belinda M. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD06957163</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1969</creationdate><topic>ALGORITHMS</topic><topic>COMPLEX NUMBERS</topic><topic>Computer Programming and Software</topic><topic>COMPUTER PROGRAMS</topic><topic>EIGENVECTORS</topic><topic>INTERPOLATION</topic><topic>MATRICES(MATHEMATICS)</topic><topic>NUMERICAL ANALYSIS</topic><topic>POLYNOMIALS</topic><topic>PROBLEM SOLVING</topic><topic>ROOTS OF EQUATIONS</topic><topic>THEOREMS</topic><topic>Theoretical Mathematics</topic><topic>THESES</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilkinson,Belinda M. M</creatorcontrib><creatorcontrib>TEXAS UNIV AUSTIN COMPUTATION CENTER</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wilkinson,Belinda M. M</au><aucorp>TEXAS UNIV AUSTIN COMPUTATION CENTER</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS</btitle><date>1969-08</date><risdate>1969</risdate><abstract>The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the roots are found, an a posteriori error analysis is performed. (Author)</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD0695716
source DTIC Technical Reports
subjects ALGORITHMS
COMPLEX NUMBERS
Computer Programming and Software
COMPUTER PROGRAMS
EIGENVECTORS
INTERPOLATION
MATRICES(MATHEMATICS)
NUMERICAL ANALYSIS
POLYNOMIALS
PROBLEM SOLVING
ROOTS OF EQUATIONS
THEOREMS
Theoretical Mathematics
THESES
title A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20POLYALGORITHM%20FOR%20FINDING%20ROOTS%20OF%20POLYNOMIAL%20EQUATIONS&rft.au=Wilkinson,Belinda%20M.%20M&rft.aucorp=TEXAS%20UNIV%20AUSTIN%20COMPUTATION%20CENTER&rft.date=1969-08&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0695716%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true