A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS
The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the ro...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Wilkinson,Belinda M. M |
description | The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the roots are found, an a posteriori error analysis is performed. (Author) |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0695716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0695716</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD06957163</originalsourceid><addsrcrecordid>eNrjZLB0VAjw94l09HH3D_IM8fBVcPMPUnDz9HPx9HNXCPL3DwlW8HcDK_Hz9_V09FFwDQx1DPH09wvmYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4uBmaWpuaGZsYEpAEOECYZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS</title><source>DTIC Technical Reports</source><creator>Wilkinson,Belinda M. M</creator><creatorcontrib>Wilkinson,Belinda M. M ; TEXAS UNIV AUSTIN COMPUTATION CENTER</creatorcontrib><description>The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the roots are found, an a posteriori error analysis is performed. (Author)</description><language>eng</language><subject>ALGORITHMS ; COMPLEX NUMBERS ; Computer Programming and Software ; COMPUTER PROGRAMS ; EIGENVECTORS ; INTERPOLATION ; MATRICES(MATHEMATICS) ; NUMERICAL ANALYSIS ; POLYNOMIALS ; PROBLEM SOLVING ; ROOTS OF EQUATIONS ; THEOREMS ; Theoretical Mathematics ; THESES</subject><creationdate>1969</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0695716$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wilkinson,Belinda M. M</creatorcontrib><creatorcontrib>TEXAS UNIV AUSTIN COMPUTATION CENTER</creatorcontrib><title>A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS</title><description>The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the roots are found, an a posteriori error analysis is performed. (Author)</description><subject>ALGORITHMS</subject><subject>COMPLEX NUMBERS</subject><subject>Computer Programming and Software</subject><subject>COMPUTER PROGRAMS</subject><subject>EIGENVECTORS</subject><subject>INTERPOLATION</subject><subject>MATRICES(MATHEMATICS)</subject><subject>NUMERICAL ANALYSIS</subject><subject>POLYNOMIALS</subject><subject>PROBLEM SOLVING</subject><subject>ROOTS OF EQUATIONS</subject><subject>THEOREMS</subject><subject>Theoretical Mathematics</subject><subject>THESES</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1969</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLB0VAjw94l09HH3D_IM8fBVcPMPUnDz9HPx9HNXCPL3DwlW8HcDK_Hz9_V09FFwDQx1DPH09wvmYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4uBmaWpuaGZsYEpAEOECYZ</recordid><startdate>196908</startdate><enddate>196908</enddate><creator>Wilkinson,Belinda M. M</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>196908</creationdate><title>A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS</title><author>Wilkinson,Belinda M. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD06957163</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1969</creationdate><topic>ALGORITHMS</topic><topic>COMPLEX NUMBERS</topic><topic>Computer Programming and Software</topic><topic>COMPUTER PROGRAMS</topic><topic>EIGENVECTORS</topic><topic>INTERPOLATION</topic><topic>MATRICES(MATHEMATICS)</topic><topic>NUMERICAL ANALYSIS</topic><topic>POLYNOMIALS</topic><topic>PROBLEM SOLVING</topic><topic>ROOTS OF EQUATIONS</topic><topic>THEOREMS</topic><topic>Theoretical Mathematics</topic><topic>THESES</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilkinson,Belinda M. M</creatorcontrib><creatorcontrib>TEXAS UNIV AUSTIN COMPUTATION CENTER</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wilkinson,Belinda M. M</au><aucorp>TEXAS UNIV AUSTIN COMPUTATION CENTER</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS</btitle><date>1969-08</date><risdate>1969</risdate><abstract>The roots of a polynomial with complex coefficients are found by applying the inverse power method to a companion matrix associated with the polynomial. If the coefficients are real, tests are performed to determine if a computed root is real or a member of a complex conjugate pair. After all the roots are found, an a posteriori error analysis is performed. (Author)</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_AD0695716 |
source | DTIC Technical Reports |
subjects | ALGORITHMS COMPLEX NUMBERS Computer Programming and Software COMPUTER PROGRAMS EIGENVECTORS INTERPOLATION MATRICES(MATHEMATICS) NUMERICAL ANALYSIS POLYNOMIALS PROBLEM SOLVING ROOTS OF EQUATIONS THEOREMS Theoretical Mathematics THESES |
title | A POLYALGORITHM FOR FINDING ROOTS OF POLYNOMIAL EQUATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20POLYALGORITHM%20FOR%20FINDING%20ROOTS%20OF%20POLYNOMIAL%20EQUATIONS&rft.au=Wilkinson,Belinda%20M.%20M&rft.aucorp=TEXAS%20UNIV%20AUSTIN%20COMPUTATION%20CENTER&rft.date=1969-08&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0695716%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |