A NONPARAMETRIC APPROACH TO PATTERN RECOGNITION. PART II. THE NON-DISJOINT CASE

In Part I of this paper, (AD-664 218), a nonparametric discrimination technique was proposed. It was shown there that when perfect discrimination was possible, this technique achieved perfection and in certain cases achieved it with a finite learning phase. In this report, the technique is modified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Owen,Joel, Henrichon,Ernest G. , Jr
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Owen,Joel
Henrichon,Ernest G. , Jr
description In Part I of this paper, (AD-664 218), a nonparametric discrimination technique was proposed. It was shown there that when perfect discrimination was possible, this technique achieved perfection and in certain cases achieved it with a finite learning phase. In this report, the technique is modified to include the case when perfect discrimination is not possible. It is shown that this procedure yields results which converge in probability to the optimal decision boundaries determined by the likelihood ratio method. (Author) See also Part 1, AD-664 218.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0693144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0693144</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD06931443</originalsourceid><addsrcrecordid>eNqFi7EKwkAMQLs4iPoHDvmBFqVF6Biu0YtgcqTZi2iFgrj0_h8V3J0evMdbFoogKgkNL-TGATAlUwwRXCGhO5mAUdCTsLNK9ZHmwFyBR_q-Zcf9WVkcAva0LhaP63MeNz-uiu2RPMTynqfbMOfpNeYBu92hrfdNU__Jb1c6K4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A NONPARAMETRIC APPROACH TO PATTERN RECOGNITION. PART II. THE NON-DISJOINT CASE</title><source>DTIC Technical Reports</source><creator>Owen,Joel ; Henrichon,Ernest G. , Jr</creator><creatorcontrib>Owen,Joel ; Henrichon,Ernest G. , Jr ; INFORMATION RESEARCH ASSOCIATES INC WALTHAM MASS</creatorcontrib><description>In Part I of this paper, (AD-664 218), a nonparametric discrimination technique was proposed. It was shown there that when perfect discrimination was possible, this technique achieved perfection and in certain cases achieved it with a finite learning phase. In this report, the technique is modified to include the case when perfect discrimination is not possible. It is shown that this procedure yields results which converge in probability to the optimal decision boundaries determined by the likelihood ratio method. (Author) See also Part 1, AD-664 218.</description><language>eng</language><subject>ALGORITHMS ; ARTIFICIAL INTELLIGENCE ; AUTOMATA ; Bionics ; Cybernetics ; DECISION THEORY ; INFORMATION THEORY ; LEARNING MACHINES ; PATTERN RECOGNITION ; PROBABILITY ; STATISTICAL ANALYSIS</subject><creationdate>1968</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,778,883,27550,27551</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0693144$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Owen,Joel</creatorcontrib><creatorcontrib>Henrichon,Ernest G. , Jr</creatorcontrib><creatorcontrib>INFORMATION RESEARCH ASSOCIATES INC WALTHAM MASS</creatorcontrib><title>A NONPARAMETRIC APPROACH TO PATTERN RECOGNITION. PART II. THE NON-DISJOINT CASE</title><description>In Part I of this paper, (AD-664 218), a nonparametric discrimination technique was proposed. It was shown there that when perfect discrimination was possible, this technique achieved perfection and in certain cases achieved it with a finite learning phase. In this report, the technique is modified to include the case when perfect discrimination is not possible. It is shown that this procedure yields results which converge in probability to the optimal decision boundaries determined by the likelihood ratio method. (Author) See also Part 1, AD-664 218.</description><subject>ALGORITHMS</subject><subject>ARTIFICIAL INTELLIGENCE</subject><subject>AUTOMATA</subject><subject>Bionics</subject><subject>Cybernetics</subject><subject>DECISION THEORY</subject><subject>INFORMATION THEORY</subject><subject>LEARNING MACHINES</subject><subject>PATTERN RECOGNITION</subject><subject>PROBABILITY</subject><subject>STATISTICAL ANALYSIS</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1968</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFi7EKwkAMQLs4iPoHDvmBFqVF6Biu0YtgcqTZi2iFgrj0_h8V3J0evMdbFoogKgkNL-TGATAlUwwRXCGhO5mAUdCTsLNK9ZHmwFyBR_q-Zcf9WVkcAva0LhaP63MeNz-uiu2RPMTynqfbMOfpNeYBu92hrfdNU__Jb1c6K4g</recordid><startdate>19681004</startdate><enddate>19681004</enddate><creator>Owen,Joel</creator><creator>Henrichon,Ernest G. , Jr</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>19681004</creationdate><title>A NONPARAMETRIC APPROACH TO PATTERN RECOGNITION. PART II. THE NON-DISJOINT CASE</title><author>Owen,Joel ; Henrichon,Ernest G. , Jr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD06931443</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1968</creationdate><topic>ALGORITHMS</topic><topic>ARTIFICIAL INTELLIGENCE</topic><topic>AUTOMATA</topic><topic>Bionics</topic><topic>Cybernetics</topic><topic>DECISION THEORY</topic><topic>INFORMATION THEORY</topic><topic>LEARNING MACHINES</topic><topic>PATTERN RECOGNITION</topic><topic>PROBABILITY</topic><topic>STATISTICAL ANALYSIS</topic><toplevel>online_resources</toplevel><creatorcontrib>Owen,Joel</creatorcontrib><creatorcontrib>Henrichon,Ernest G. , Jr</creatorcontrib><creatorcontrib>INFORMATION RESEARCH ASSOCIATES INC WALTHAM MASS</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Owen,Joel</au><au>Henrichon,Ernest G. , Jr</au><aucorp>INFORMATION RESEARCH ASSOCIATES INC WALTHAM MASS</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A NONPARAMETRIC APPROACH TO PATTERN RECOGNITION. PART II. THE NON-DISJOINT CASE</btitle><date>1968-10-04</date><risdate>1968</risdate><abstract>In Part I of this paper, (AD-664 218), a nonparametric discrimination technique was proposed. It was shown there that when perfect discrimination was possible, this technique achieved perfection and in certain cases achieved it with a finite learning phase. In this report, the technique is modified to include the case when perfect discrimination is not possible. It is shown that this procedure yields results which converge in probability to the optimal decision boundaries determined by the likelihood ratio method. (Author) See also Part 1, AD-664 218.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD0693144
source DTIC Technical Reports
subjects ALGORITHMS
ARTIFICIAL INTELLIGENCE
AUTOMATA
Bionics
Cybernetics
DECISION THEORY
INFORMATION THEORY
LEARNING MACHINES
PATTERN RECOGNITION
PROBABILITY
STATISTICAL ANALYSIS
title A NONPARAMETRIC APPROACH TO PATTERN RECOGNITION. PART II. THE NON-DISJOINT CASE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20NONPARAMETRIC%20APPROACH%20TO%20PATTERN%20RECOGNITION.%20PART%20II.%20THE%20NON-DISJOINT%20CASE&rft.au=Owen,Joel&rft.aucorp=INFORMATION%20RESEARCH%20ASSOCIATES%20INC%20WALTHAM%20MASS&rft.date=1968-10-04&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0693144%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true