THE LIMITING DISTRIBUTION OF THE LIKELIHOOD RATIO STATISTIC UNDER A CLASS OF LOCAL ALTERNATIVES

The paper gives a proof that -21 n lambda sub n, the likelihood ratio statistic based on a sample of size n, converges in distribution to a noncentral chi-square distribution under local alternatives to the null hypothesis for a multi-dimensional parameter space. Consideration is limited to maximum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Davidson,Roger R, Lever,William E
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Davidson,Roger R
Lever,William E
description The paper gives a proof that -21 n lambda sub n, the likelihood ratio statistic based on a sample of size n, converges in distribution to a noncentral chi-square distribution under local alternatives to the null hypothesis for a multi-dimensional parameter space. Consideration is limited to maximum likelihood estimates that are solutions to the likelihood equations obtained for the maximization process. Proof of uniform convergence for this situation has been given by Wald (Wald, A. (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54, 426-482.), whose assumptions include the uniform consistency of the maximum likelihood estimates and of the likelihood ratio test. The assumptions utilized in this paper can be more directly verified in applications than those required by Wald. (Author)
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0661200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0661200</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD06612003</originalsourceid><addsrcrecordid>eNqFyrEKwjAQgOEsDqK-gcO9gBAVup_J1RzGBJKraxCtUBCX5v2xorvTP3z_XBVxBJ7PLByOYDlL4kMnHAPEFr54Is8uRgsJJ4AsU7KwgS5YSoBgPOb8-X006AG9UArTdKG8VLPH9Tn2q18Xat2SGLe51-FWxjq8-lrQ6qbZ7rTe_-E3TkwwFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>THE LIMITING DISTRIBUTION OF THE LIKELIHOOD RATIO STATISTIC UNDER A CLASS OF LOCAL ALTERNATIVES</title><source>DTIC Technical Reports</source><creator>Davidson,Roger R ; Lever,William E</creator><creatorcontrib>Davidson,Roger R ; Lever,William E ; FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS</creatorcontrib><description>The paper gives a proof that -21 n lambda sub n, the likelihood ratio statistic based on a sample of size n, converges in distribution to a noncentral chi-square distribution under local alternatives to the null hypothesis for a multi-dimensional parameter space. Consideration is limited to maximum likelihood estimates that are solutions to the likelihood equations obtained for the maximization process. Proof of uniform convergence for this situation has been given by Wald (Wald, A. (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54, 426-482.), whose assumptions include the uniform consistency of the maximum likelihood estimates and of the likelihood ratio test. The assumptions utilized in this paper can be more directly verified in applications than those required by Wald. (Author)</description><language>eng</language><subject>CONVERGENCE ; DISTRIBUTION FUNCTIONS ; LIKELIHOOD RATIO TESTS ; MAXIMUM LIKELIHOOD ; Operations Research ; QUALITY CONTROL ; SAMPLING ; STATISTICAL ANALYSIS ; THEOREMS ; THESES</subject><creationdate>1967</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27544,27545</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0661200$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Davidson,Roger R</creatorcontrib><creatorcontrib>Lever,William E</creatorcontrib><creatorcontrib>FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS</creatorcontrib><title>THE LIMITING DISTRIBUTION OF THE LIKELIHOOD RATIO STATISTIC UNDER A CLASS OF LOCAL ALTERNATIVES</title><description>The paper gives a proof that -21 n lambda sub n, the likelihood ratio statistic based on a sample of size n, converges in distribution to a noncentral chi-square distribution under local alternatives to the null hypothesis for a multi-dimensional parameter space. Consideration is limited to maximum likelihood estimates that are solutions to the likelihood equations obtained for the maximization process. Proof of uniform convergence for this situation has been given by Wald (Wald, A. (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54, 426-482.), whose assumptions include the uniform consistency of the maximum likelihood estimates and of the likelihood ratio test. The assumptions utilized in this paper can be more directly verified in applications than those required by Wald. (Author)</description><subject>CONVERGENCE</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>LIKELIHOOD RATIO TESTS</subject><subject>MAXIMUM LIKELIHOOD</subject><subject>Operations Research</subject><subject>QUALITY CONTROL</subject><subject>SAMPLING</subject><subject>STATISTICAL ANALYSIS</subject><subject>THEOREMS</subject><subject>THESES</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1967</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFyrEKwjAQgOEsDqK-gcO9gBAVup_J1RzGBJKraxCtUBCX5v2xorvTP3z_XBVxBJ7PLByOYDlL4kMnHAPEFr54Is8uRgsJJ4AsU7KwgS5YSoBgPOb8-X006AG9UArTdKG8VLPH9Tn2q18Xat2SGLe51-FWxjq8-lrQ6qbZ7rTe_-E3TkwwFA</recordid><startdate>196709</startdate><enddate>196709</enddate><creator>Davidson,Roger R</creator><creator>Lever,William E</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>196709</creationdate><title>THE LIMITING DISTRIBUTION OF THE LIKELIHOOD RATIO STATISTIC UNDER A CLASS OF LOCAL ALTERNATIVES</title><author>Davidson,Roger R ; Lever,William E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD06612003</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1967</creationdate><topic>CONVERGENCE</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>LIKELIHOOD RATIO TESTS</topic><topic>MAXIMUM LIKELIHOOD</topic><topic>Operations Research</topic><topic>QUALITY CONTROL</topic><topic>SAMPLING</topic><topic>STATISTICAL ANALYSIS</topic><topic>THEOREMS</topic><topic>THESES</topic><toplevel>online_resources</toplevel><creatorcontrib>Davidson,Roger R</creatorcontrib><creatorcontrib>Lever,William E</creatorcontrib><creatorcontrib>FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Davidson,Roger R</au><au>Lever,William E</au><aucorp>FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>THE LIMITING DISTRIBUTION OF THE LIKELIHOOD RATIO STATISTIC UNDER A CLASS OF LOCAL ALTERNATIVES</btitle><date>1967-09</date><risdate>1967</risdate><abstract>The paper gives a proof that -21 n lambda sub n, the likelihood ratio statistic based on a sample of size n, converges in distribution to a noncentral chi-square distribution under local alternatives to the null hypothesis for a multi-dimensional parameter space. Consideration is limited to maximum likelihood estimates that are solutions to the likelihood equations obtained for the maximization process. Proof of uniform convergence for this situation has been given by Wald (Wald, A. (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54, 426-482.), whose assumptions include the uniform consistency of the maximum likelihood estimates and of the likelihood ratio test. The assumptions utilized in this paper can be more directly verified in applications than those required by Wald. (Author)</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD0661200
source DTIC Technical Reports
subjects CONVERGENCE
DISTRIBUTION FUNCTIONS
LIKELIHOOD RATIO TESTS
MAXIMUM LIKELIHOOD
Operations Research
QUALITY CONTROL
SAMPLING
STATISTICAL ANALYSIS
THEOREMS
THESES
title THE LIMITING DISTRIBUTION OF THE LIKELIHOOD RATIO STATISTIC UNDER A CLASS OF LOCAL ALTERNATIVES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=THE%20LIMITING%20DISTRIBUTION%20OF%20THE%20LIKELIHOOD%20RATIO%20STATISTIC%20UNDER%20A%20CLASS%20OF%20LOCAL%20ALTERNATIVES&rft.au=Davidson,Roger%20R&rft.aucorp=FLORIDA%20STATE%20UNIV%20TALLAHASSEE%20DEPT%20OF%20STATISTICS&rft.date=1967-09&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0661200%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true