A LOWER BOUND FOR THE DELTA-NIELSEN NUMBER

This paper is concerned with the number of solutions of three kinds of equations. Let f,g : X approaches Y and h : X approaches X be maps, and let y sub 0 be a member of Y. The equations we will study are (1) f(x) = g(x), (2) f(x) = y sub 0, and (3) h(x) = x. In a previous paper, the first author de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brooks,Robin B. S, Brown,Robert F
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Brooks,Robin B. S
Brown,Robert F
description This paper is concerned with the number of solutions of three kinds of equations. Let f,g : X approaches Y and h : X approaches X be maps, and let y sub 0 be a member of Y. The equations we will study are (1) f(x) = g(x), (2) f(x) = y sub 0, and (3) h(x) = x. In a previous paper, the first author defined a lower bound N for the number of solutions of these equations which remains such a lower bound when f,g, and h are moved through homotopies. The number N is called the Delta-Nielsen number of the equation. Prepared in cooperation with California Univ., Los Angeles, under Grant NSF-GP-4018.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0656306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0656306</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD06563063</originalsourceid><addsrcrecordid>eNrjZNByVPDxD3cNUnDyD_VzUXDzD1II8XBVcHH1CXHU9fN09Ql29VPwC_V1cg3iYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4uBmamZsYGZsYEpAG-kyFX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A LOWER BOUND FOR THE DELTA-NIELSEN NUMBER</title><source>DTIC Technical Reports</source><creator>Brooks,Robin B. S ; Brown,Robert F</creator><creatorcontrib>Brooks,Robin B. S ; Brown,Robert F ; RAND CORP SANTA MONICA CALIF</creatorcontrib><description>This paper is concerned with the number of solutions of three kinds of equations. Let f,g : X approaches Y and h : X approaches X be maps, and let y sub 0 be a member of Y. The equations we will study are (1) f(x) = g(x), (2) f(x) = y sub 0, and (3) h(x) = x. In a previous paper, the first author defined a lower bound N for the number of solutions of these equations which remains such a lower bound when f,g, and h are moved through homotopies. The number N is called the Delta-Nielsen number of the equation. Prepared in cooperation with California Univ., Los Angeles, under Grant NSF-GP-4018.</description><language>eng</language><subject>EQUATIONS ; HAUSDORFF SPACE ; MAPPING(TRANSFORMATIONS) ; MATHEMATICS ; Numerical Mathematics ; THEOREMS</subject><creationdate>1967</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0656306$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Brooks,Robin B. S</creatorcontrib><creatorcontrib>Brown,Robert F</creatorcontrib><creatorcontrib>RAND CORP SANTA MONICA CALIF</creatorcontrib><title>A LOWER BOUND FOR THE DELTA-NIELSEN NUMBER</title><description>This paper is concerned with the number of solutions of three kinds of equations. Let f,g : X approaches Y and h : X approaches X be maps, and let y sub 0 be a member of Y. The equations we will study are (1) f(x) = g(x), (2) f(x) = y sub 0, and (3) h(x) = x. In a previous paper, the first author defined a lower bound N for the number of solutions of these equations which remains such a lower bound when f,g, and h are moved through homotopies. The number N is called the Delta-Nielsen number of the equation. Prepared in cooperation with California Univ., Los Angeles, under Grant NSF-GP-4018.</description><subject>EQUATIONS</subject><subject>HAUSDORFF SPACE</subject><subject>MAPPING(TRANSFORMATIONS)</subject><subject>MATHEMATICS</subject><subject>Numerical Mathematics</subject><subject>THEOREMS</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1967</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZNByVPDxD3cNUnDyD_VzUXDzD1II8XBVcHH1CXHU9fN09Ql29VPwC_V1cg3iYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4uBmamZsYGZsYEpAG-kyFX</recordid><startdate>196707</startdate><enddate>196707</enddate><creator>Brooks,Robin B. S</creator><creator>Brown,Robert F</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>196707</creationdate><title>A LOWER BOUND FOR THE DELTA-NIELSEN NUMBER</title><author>Brooks,Robin B. S ; Brown,Robert F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD06563063</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1967</creationdate><topic>EQUATIONS</topic><topic>HAUSDORFF SPACE</topic><topic>MAPPING(TRANSFORMATIONS)</topic><topic>MATHEMATICS</topic><topic>Numerical Mathematics</topic><topic>THEOREMS</topic><toplevel>online_resources</toplevel><creatorcontrib>Brooks,Robin B. S</creatorcontrib><creatorcontrib>Brown,Robert F</creatorcontrib><creatorcontrib>RAND CORP SANTA MONICA CALIF</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brooks,Robin B. S</au><au>Brown,Robert F</au><aucorp>RAND CORP SANTA MONICA CALIF</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A LOWER BOUND FOR THE DELTA-NIELSEN NUMBER</btitle><date>1967-07</date><risdate>1967</risdate><abstract>This paper is concerned with the number of solutions of three kinds of equations. Let f,g : X approaches Y and h : X approaches X be maps, and let y sub 0 be a member of Y. The equations we will study are (1) f(x) = g(x), (2) f(x) = y sub 0, and (3) h(x) = x. In a previous paper, the first author defined a lower bound N for the number of solutions of these equations which remains such a lower bound when f,g, and h are moved through homotopies. The number N is called the Delta-Nielsen number of the equation. Prepared in cooperation with California Univ., Los Angeles, under Grant NSF-GP-4018.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD0656306
source DTIC Technical Reports
subjects EQUATIONS
HAUSDORFF SPACE
MAPPING(TRANSFORMATIONS)
MATHEMATICS
Numerical Mathematics
THEOREMS
title A LOWER BOUND FOR THE DELTA-NIELSEN NUMBER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20LOWER%20BOUND%20FOR%20THE%20DELTA-NIELSEN%20NUMBER&rft.au=Brooks,Robin%20B.%20S&rft.aucorp=RAND%20CORP%20SANTA%20MONICA%20CALIF&rft.date=1967-07&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0656306%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true