WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY
It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Fisher,George M. C Gurtin,Morton E |
description | It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the propagation speeds of shocks and all higher order waves. Solutions which contain discontinuities of arbitrary order N are easily exhibited. |
format | Report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0604661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0604661</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD06046613</originalsourceid><addsrcrecordid>eNrjZLAIdwxzVQgI8g9wdHcM8fT3U_D0UwjxcFXw8fRzdQwCMf2DIhX83RTCPIOd_V19HINDPJ09QyJ5GFjTEnOKU3mhNDeDjJtriLOHbkpJZnJ8cUlmXmpJvKOLgZmBiZmZoTEBaQDatyWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY</title><source>DTIC Technical Reports</source><creator>Fisher,George M. C ; Gurtin,Morton E</creator><creatorcontrib>Fisher,George M. C ; Gurtin,Morton E ; BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS</creatorcontrib><description>It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the propagation speeds of shocks and all higher order waves. Solutions which contain discontinuities of arbitrary order N are easily exhibited.</description><language>eng</language><subject>ACCELERATION ; DENSITY ; EIGENVECTORS ; LINEAR SYSTEMS ; MECHANICAL WAVES ; PROPAGATION ; RELAXATION TIME ; SHOCK WAVES ; THEORY ; VECTOR ANALYSIS ; VISCOELASTICITY</subject><creationdate>1964</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27546,27547</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0604661$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fisher,George M. C</creatorcontrib><creatorcontrib>Gurtin,Morton E</creatorcontrib><creatorcontrib>BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS</creatorcontrib><title>WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY</title><description>It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the propagation speeds of shocks and all higher order waves. Solutions which contain discontinuities of arbitrary order N are easily exhibited.</description><subject>ACCELERATION</subject><subject>DENSITY</subject><subject>EIGENVECTORS</subject><subject>LINEAR SYSTEMS</subject><subject>MECHANICAL WAVES</subject><subject>PROPAGATION</subject><subject>RELAXATION TIME</subject><subject>SHOCK WAVES</subject><subject>THEORY</subject><subject>VECTOR ANALYSIS</subject><subject>VISCOELASTICITY</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1964</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLAIdwxzVQgI8g9wdHcM8fT3U_D0UwjxcFXw8fRzdQwCMf2DIhX83RTCPIOd_V19HINDPJ09QyJ5GFjTEnOKU3mhNDeDjJtriLOHbkpJZnJ8cUlmXmpJvKOLgZmBiZmZoTEBaQDatyWg</recordid><startdate>196408</startdate><enddate>196408</enddate><creator>Fisher,George M. C</creator><creator>Gurtin,Morton E</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>196408</creationdate><title>WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY</title><author>Fisher,George M. C ; Gurtin,Morton E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD06046613</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1964</creationdate><topic>ACCELERATION</topic><topic>DENSITY</topic><topic>EIGENVECTORS</topic><topic>LINEAR SYSTEMS</topic><topic>MECHANICAL WAVES</topic><topic>PROPAGATION</topic><topic>RELAXATION TIME</topic><topic>SHOCK WAVES</topic><topic>THEORY</topic><topic>VECTOR ANALYSIS</topic><topic>VISCOELASTICITY</topic><toplevel>online_resources</toplevel><creatorcontrib>Fisher,George M. C</creatorcontrib><creatorcontrib>Gurtin,Morton E</creatorcontrib><creatorcontrib>BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fisher,George M. C</au><au>Gurtin,Morton E</au><aucorp>BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY</btitle><date>1964-08</date><risdate>1964</risdate><abstract>It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the propagation speeds of shocks and all higher order waves. Solutions which contain discontinuities of arbitrary order N are easily exhibited.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_AD0604661 |
source | DTIC Technical Reports |
subjects | ACCELERATION DENSITY EIGENVECTORS LINEAR SYSTEMS MECHANICAL WAVES PROPAGATION RELAXATION TIME SHOCK WAVES THEORY VECTOR ANALYSIS VISCOELASTICITY |
title | WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=WAVE%20PROPAGATION%20IN%20THE%20LINEAR%20THEORY%20OF%20VISCOELASTICITY&rft.au=Fisher,George%20M.%20C&rft.aucorp=BROWN%20UNIV%20PROVIDENCE%20R%20I%20DIV%20OF%20APPLIED%20MATHEMATICS&rft.date=1964-08&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0604661%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |