WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY

It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fisher,George M. C, Gurtin,Morton E
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fisher,George M. C
Gurtin,Morton E
description It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the propagation speeds of shocks and all higher order waves. Solutions which contain discontinuities of arbitrary order N are easily exhibited.
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0604661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0604661</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD06046613</originalsourceid><addsrcrecordid>eNrjZLAIdwxzVQgI8g9wdHcM8fT3U_D0UwjxcFXw8fRzdQwCMf2DIhX83RTCPIOd_V19HINDPJ09QyJ5GFjTEnOKU3mhNDeDjJtriLOHbkpJZnJ8cUlmXmpJvKOLgZmBiZmZoTEBaQDatyWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY</title><source>DTIC Technical Reports</source><creator>Fisher,George M. C ; Gurtin,Morton E</creator><creatorcontrib>Fisher,George M. C ; Gurtin,Morton E ; BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS</creatorcontrib><description>It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the propagation speeds of shocks and all higher order waves. Solutions which contain discontinuities of arbitrary order N are easily exhibited.</description><language>eng</language><subject>ACCELERATION ; DENSITY ; EIGENVECTORS ; LINEAR SYSTEMS ; MECHANICAL WAVES ; PROPAGATION ; RELAXATION TIME ; SHOCK WAVES ; THEORY ; VECTOR ANALYSIS ; VISCOELASTICITY</subject><creationdate>1964</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27546,27547</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0604661$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fisher,George M. C</creatorcontrib><creatorcontrib>Gurtin,Morton E</creatorcontrib><creatorcontrib>BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS</creatorcontrib><title>WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY</title><description>It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the propagation speeds of shocks and all higher order waves. Solutions which contain discontinuities of arbitrary order N are easily exhibited.</description><subject>ACCELERATION</subject><subject>DENSITY</subject><subject>EIGENVECTORS</subject><subject>LINEAR SYSTEMS</subject><subject>MECHANICAL WAVES</subject><subject>PROPAGATION</subject><subject>RELAXATION TIME</subject><subject>SHOCK WAVES</subject><subject>THEORY</subject><subject>VECTOR ANALYSIS</subject><subject>VISCOELASTICITY</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1964</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLAIdwxzVQgI8g9wdHcM8fT3U_D0UwjxcFXw8fRzdQwCMf2DIhX83RTCPIOd_V19HINDPJ09QyJ5GFjTEnOKU3mhNDeDjJtriLOHbkpJZnJ8cUlmXmpJvKOLgZmBiZmZoTEBaQDatyWg</recordid><startdate>196408</startdate><enddate>196408</enddate><creator>Fisher,George M. C</creator><creator>Gurtin,Morton E</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>196408</creationdate><title>WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY</title><author>Fisher,George M. C ; Gurtin,Morton E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD06046613</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1964</creationdate><topic>ACCELERATION</topic><topic>DENSITY</topic><topic>EIGENVECTORS</topic><topic>LINEAR SYSTEMS</topic><topic>MECHANICAL WAVES</topic><topic>PROPAGATION</topic><topic>RELAXATION TIME</topic><topic>SHOCK WAVES</topic><topic>THEORY</topic><topic>VECTOR ANALYSIS</topic><topic>VISCOELASTICITY</topic><toplevel>online_resources</toplevel><creatorcontrib>Fisher,George M. C</creatorcontrib><creatorcontrib>Gurtin,Morton E</creatorcontrib><creatorcontrib>BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fisher,George M. C</au><au>Gurtin,Morton E</au><aucorp>BROWN UNIV PROVIDENCE R I DIV OF APPLIED MATHEMATICS</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY</btitle><date>1964-08</date><risdate>1964</risdate><abstract>It was shown in AD-436 823 that, in the linear theory of viscoelasticity, the speed of propagation of an acceleration wave is a solution of a particular eigenvalue problem. It is demonstrated that this eigenvalue problem governs, not only the speed of propagation of acceleration waves, but also the propagation speeds of shocks and all higher order waves. Solutions which contain discontinuities of arbitrary order N are easily exhibited.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD0604661
source DTIC Technical Reports
subjects ACCELERATION
DENSITY
EIGENVECTORS
LINEAR SYSTEMS
MECHANICAL WAVES
PROPAGATION
RELAXATION TIME
SHOCK WAVES
THEORY
VECTOR ANALYSIS
VISCOELASTICITY
title WAVE PROPAGATION IN THE LINEAR THEORY OF VISCOELASTICITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=WAVE%20PROPAGATION%20IN%20THE%20LINEAR%20THEORY%20OF%20VISCOELASTICITY&rft.au=Fisher,George%20M.%20C&rft.aucorp=BROWN%20UNIV%20PROVIDENCE%20R%20I%20DIV%20OF%20APPLIED%20MATHEMATICS&rft.date=1964-08&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0604661%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true