Thermally Stable Burning Rate Accelerators

A small particle size AP has been produced by freeze-drying, fluid energy milling, and solvent/nonsolvent precipitation techniques from a master batch of thermally stable AP. A thermal stability (1% wt. loss at 375 F) in excess of 175 hours has been demonstrated. The inter-relationships between AP s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stephens, W D, Flanigan, D A, Hightower, J O, Miller, M
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Stephens, W D
Flanigan, D A
Hightower, J O
Miller, M
description A small particle size AP has been produced by freeze-drying, fluid energy milling, and solvent/nonsolvent precipitation techniques from a master batch of thermally stable AP. A thermal stability (1% wt. loss at 375 F) in excess of 175 hours has been demonstrated. The inter-relationships between AP stability, AP particle size, and catalyst type have been studied in propellant. Ferrocene-type compounds containing electron withdrawing groups and those that do not contain an alpha hydrogen atom exhibited improved thermal stability when compared with n-butylferrocene. Propellants containing ferrocene type catalysts, which are insoluble in the binder, have thermal stabilities that are better than those obtained with counterpart soluble catalysts. (Author)
format Report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD0516197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD0516197</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD05161973</originalsourceid><addsrcrecordid>eNrjZNAKyUgtyk3MyalUCC5JTMpJVXAqLcrLzEtXCEosSVVwTE5OzUktSizJLyrmYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4uBqaGZoaW5sYEpAGFCyXr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Thermally Stable Burning Rate Accelerators</title><source>DTIC Technical Reports</source><creator>Stephens, W D ; Flanigan, D A ; Hightower, J O ; Miller, M</creator><creatorcontrib>Stephens, W D ; Flanigan, D A ; Hightower, J O ; Miller, M ; MORTON THIOKOL INC HUNTSVILLE AL HUNTSVILLE DIV</creatorcontrib><description>A small particle size AP has been produced by freeze-drying, fluid energy milling, and solvent/nonsolvent precipitation techniques from a master batch of thermally stable AP. A thermal stability (1% wt. loss at 375 F) in excess of 175 hours has been demonstrated. The inter-relationships between AP stability, AP particle size, and catalyst type have been studied in propellant. Ferrocene-type compounds containing electron withdrawing groups and those that do not contain an alpha hydrogen atom exhibited improved thermal stability when compared with n-butylferrocene. Propellants containing ferrocene type catalysts, which are insoluble in the binder, have thermal stabilities that are better than those obtained with counterpart soluble catalysts. (Author)</description><language>eng</language><subject>ALUMINUM ; AMMONIUM PERCHLORATE ; BALLISTIC MODIFIERS ; BENZOYLFERROCENE COMPOUNDS ; BURNING RATE ; BUTADIENES ; CATALYSTS ; COMPOSITE PROPELLANTS ; CTPB PROPELLANT INGREDIENT ; DECANONES ; DECENES ; DICYCLOPENTADIENYL METAL COMPOUNDS ; FERROCENE/N-BUTYL ; FERROCENYL POLYMERS ; FREEZE DRYING ; FUEL ADDITIVES ; GRINDING ; HEAT RESISTANT MATERIALS ; IMPURITIES ; IRON ORGANIC COMPOUNDS ; MOISTURE ; MOLECULAR STRUCTURE ; OXIDATION ; PARTICLE SIZE ; PROCESSING ; PULTRAFINE AMMONIUM PERCHLORATE ; RECRYSTALLIZATION ; SOLID ROCKET OXIDIZERS ; Solid Rocket Propellants ; SOLUBILITY ; SPRAY FREEZE DRYING ; THERMAL STABILITY ; THERMOGRAVIMETRIC ANALYSIS ; ULTRAFINES</subject><creationdate>1971</creationdate><rights>Approved for public release; distribution unlimited</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27544,27545</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD0516197$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stephens, W D</creatorcontrib><creatorcontrib>Flanigan, D A</creatorcontrib><creatorcontrib>Hightower, J O</creatorcontrib><creatorcontrib>Miller, M</creatorcontrib><creatorcontrib>MORTON THIOKOL INC HUNTSVILLE AL HUNTSVILLE DIV</creatorcontrib><title>Thermally Stable Burning Rate Accelerators</title><description>A small particle size AP has been produced by freeze-drying, fluid energy milling, and solvent/nonsolvent precipitation techniques from a master batch of thermally stable AP. A thermal stability (1% wt. loss at 375 F) in excess of 175 hours has been demonstrated. The inter-relationships between AP stability, AP particle size, and catalyst type have been studied in propellant. Ferrocene-type compounds containing electron withdrawing groups and those that do not contain an alpha hydrogen atom exhibited improved thermal stability when compared with n-butylferrocene. Propellants containing ferrocene type catalysts, which are insoluble in the binder, have thermal stabilities that are better than those obtained with counterpart soluble catalysts. (Author)</description><subject>ALUMINUM</subject><subject>AMMONIUM PERCHLORATE</subject><subject>BALLISTIC MODIFIERS</subject><subject>BENZOYLFERROCENE COMPOUNDS</subject><subject>BURNING RATE</subject><subject>BUTADIENES</subject><subject>CATALYSTS</subject><subject>COMPOSITE PROPELLANTS</subject><subject>CTPB PROPELLANT INGREDIENT</subject><subject>DECANONES</subject><subject>DECENES</subject><subject>DICYCLOPENTADIENYL METAL COMPOUNDS</subject><subject>FERROCENE/N-BUTYL</subject><subject>FERROCENYL POLYMERS</subject><subject>FREEZE DRYING</subject><subject>FUEL ADDITIVES</subject><subject>GRINDING</subject><subject>HEAT RESISTANT MATERIALS</subject><subject>IMPURITIES</subject><subject>IRON ORGANIC COMPOUNDS</subject><subject>MOISTURE</subject><subject>MOLECULAR STRUCTURE</subject><subject>OXIDATION</subject><subject>PARTICLE SIZE</subject><subject>PROCESSING</subject><subject>PULTRAFINE AMMONIUM PERCHLORATE</subject><subject>RECRYSTALLIZATION</subject><subject>SOLID ROCKET OXIDIZERS</subject><subject>Solid Rocket Propellants</subject><subject>SOLUBILITY</subject><subject>SPRAY FREEZE DRYING</subject><subject>THERMAL STABILITY</subject><subject>THERMOGRAVIMETRIC ANALYSIS</subject><subject>ULTRAFINES</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1971</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZNAKyUgtyk3MyalUCC5JTMpJVXAqLcrLzEtXCEosSVVwTE5OzUktSizJLyrmYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4uBqaGZoaW5sYEpAGFCyXr</recordid><startdate>197107</startdate><enddate>197107</enddate><creator>Stephens, W D</creator><creator>Flanigan, D A</creator><creator>Hightower, J O</creator><creator>Miller, M</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>197107</creationdate><title>Thermally Stable Burning Rate Accelerators</title><author>Stephens, W D ; Flanigan, D A ; Hightower, J O ; Miller, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD05161973</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1971</creationdate><topic>ALUMINUM</topic><topic>AMMONIUM PERCHLORATE</topic><topic>BALLISTIC MODIFIERS</topic><topic>BENZOYLFERROCENE COMPOUNDS</topic><topic>BURNING RATE</topic><topic>BUTADIENES</topic><topic>CATALYSTS</topic><topic>COMPOSITE PROPELLANTS</topic><topic>CTPB PROPELLANT INGREDIENT</topic><topic>DECANONES</topic><topic>DECENES</topic><topic>DICYCLOPENTADIENYL METAL COMPOUNDS</topic><topic>FERROCENE/N-BUTYL</topic><topic>FERROCENYL POLYMERS</topic><topic>FREEZE DRYING</topic><topic>FUEL ADDITIVES</topic><topic>GRINDING</topic><topic>HEAT RESISTANT MATERIALS</topic><topic>IMPURITIES</topic><topic>IRON ORGANIC COMPOUNDS</topic><topic>MOISTURE</topic><topic>MOLECULAR STRUCTURE</topic><topic>OXIDATION</topic><topic>PARTICLE SIZE</topic><topic>PROCESSING</topic><topic>PULTRAFINE AMMONIUM PERCHLORATE</topic><topic>RECRYSTALLIZATION</topic><topic>SOLID ROCKET OXIDIZERS</topic><topic>Solid Rocket Propellants</topic><topic>SOLUBILITY</topic><topic>SPRAY FREEZE DRYING</topic><topic>THERMAL STABILITY</topic><topic>THERMOGRAVIMETRIC ANALYSIS</topic><topic>ULTRAFINES</topic><toplevel>online_resources</toplevel><creatorcontrib>Stephens, W D</creatorcontrib><creatorcontrib>Flanigan, D A</creatorcontrib><creatorcontrib>Hightower, J O</creatorcontrib><creatorcontrib>Miller, M</creatorcontrib><creatorcontrib>MORTON THIOKOL INC HUNTSVILLE AL HUNTSVILLE DIV</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stephens, W D</au><au>Flanigan, D A</au><au>Hightower, J O</au><au>Miller, M</au><aucorp>MORTON THIOKOL INC HUNTSVILLE AL HUNTSVILLE DIV</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Thermally Stable Burning Rate Accelerators</btitle><date>1971-07</date><risdate>1971</risdate><abstract>A small particle size AP has been produced by freeze-drying, fluid energy milling, and solvent/nonsolvent precipitation techniques from a master batch of thermally stable AP. A thermal stability (1% wt. loss at 375 F) in excess of 175 hours has been demonstrated. The inter-relationships between AP stability, AP particle size, and catalyst type have been studied in propellant. Ferrocene-type compounds containing electron withdrawing groups and those that do not contain an alpha hydrogen atom exhibited improved thermal stability when compared with n-butylferrocene. Propellants containing ferrocene type catalysts, which are insoluble in the binder, have thermal stabilities that are better than those obtained with counterpart soluble catalysts. (Author)</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD0516197
source DTIC Technical Reports
subjects ALUMINUM
AMMONIUM PERCHLORATE
BALLISTIC MODIFIERS
BENZOYLFERROCENE COMPOUNDS
BURNING RATE
BUTADIENES
CATALYSTS
COMPOSITE PROPELLANTS
CTPB PROPELLANT INGREDIENT
DECANONES
DECENES
DICYCLOPENTADIENYL METAL COMPOUNDS
FERROCENE/N-BUTYL
FERROCENYL POLYMERS
FREEZE DRYING
FUEL ADDITIVES
GRINDING
HEAT RESISTANT MATERIALS
IMPURITIES
IRON ORGANIC COMPOUNDS
MOISTURE
MOLECULAR STRUCTURE
OXIDATION
PARTICLE SIZE
PROCESSING
PULTRAFINE AMMONIUM PERCHLORATE
RECRYSTALLIZATION
SOLID ROCKET OXIDIZERS
Solid Rocket Propellants
SOLUBILITY
SPRAY FREEZE DRYING
THERMAL STABILITY
THERMOGRAVIMETRIC ANALYSIS
ULTRAFINES
title Thermally Stable Burning Rate Accelerators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Thermally%20Stable%20Burning%20Rate%20Accelerators&rft.au=Stephens,%20W%20D&rft.aucorp=MORTON%20THIOKOL%20INC%20HUNTSVILLE%20AL%20HUNTSVILLE%20DIV&rft.date=1971-07&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD0516197%3C/dtic_1RU%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true