Enhancing metabolic activity and differentiation potential in adipose mesenchymal stem cells via high-resolution surface-acoustic-wave contactless patterning

Acoustofluidics has shown great potential for label-free bioparticle patterning with excellent biocompatibility. Acoustofluidic patterning enables the induction of cell–cell interactions, which play fundamental roles in organogenesis and tissue development. One of the current challenges in tissue en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystems & nanoengineering 2022-07, Vol.8 (1), p.79-79, Article 79
Hauptverfasser: Martinez Villegas, Karina, Rasouli, Reza, Tabrizian, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acoustofluidics has shown great potential for label-free bioparticle patterning with excellent biocompatibility. Acoustofluidic patterning enables the induction of cell–cell interactions, which play fundamental roles in organogenesis and tissue development. One of the current challenges in tissue engineering is not only the control of the spatial arrangement of cells but also the preservation of cell patterns over time. In this work, we developed a standing surface acoustic wave-based platform and demonstrated its capability for the well-controlled and rapid cell patterning of adipose-derived mesenchymal stem cells in a high-density homogenous collagen hydrogel. This biocompatible hydrogel is easily UV crosslinked and can be retrieved within 3 min. Acoustic waves successfully guided the cells toward pressure nodal lines, creating a contactless alignment of cells in
ISSN:2055-7434
2096-1030
2055-7434
DOI:10.1038/s41378-022-00415-w