Ballistocardial Signal-Based Personal Identification Using Deep Learning for the Non-Invasive and Non-Restrictive Monitoring of Vital Signs

Owing to accelerated societal aging, the prevalence of elderly individuals experiencing solitary or sudden death at home has increased. Therefore, herein, we aimed to develop a monitoring system that utilizes piezoelectric sensors for the non-invasive and non-restrictive monitoring of vital signs, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-04, Vol.24 (8), p.2527
Hauptverfasser: Takahashi, Karin, Ueno, Hitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Owing to accelerated societal aging, the prevalence of elderly individuals experiencing solitary or sudden death at home has increased. Therefore, herein, we aimed to develop a monitoring system that utilizes piezoelectric sensors for the non-invasive and non-restrictive monitoring of vital signs, including the heart rate and respiration, to detect changes in the health status of several elderly individuals. A ballistocardiogram with a piezoelectric sensor was tested using seven individuals. The frequency spectra of the biosignals acquired from the piezoelectric sensors exhibited multiple peaks corresponding to the harmonics originating from the heartbeat. We aimed for individual identification based on the shapes of these peaks as the recognition criteria. The results of individual identification using deep learning techniques revealed good identification proficiency. Altogether, the monitoring system integrated with piezoelectric sensors showed good potential as a personal identification system for identifying individuals with abnormal biological signals.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24082527