Agricultural Product Recommendation Model based on BMF

In this article, based on the collaborative deep learning (CDL) and convolutional matrix factorisation (ConvMF), the language model BERT is used to replace the traditional word vector construction method, and the bidirectional long–short time memory network Bi-LSTM is used to construct an improved c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and nonlinear sciences 2020-07, Vol.5 (2), p.415-424
Hauptverfasser: Wan, Fucheng, Zhu, Dengyun, He, Xiangzhen, Guo, Qi, Zhang, Dongjiao, Ren, Zhenyang, Du, Yuxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, based on the collaborative deep learning (CDL) and convolutional matrix factorisation (ConvMF), the language model BERT is used to replace the traditional word vector construction method, and the bidirectional long–short time memory network Bi-LSTM is used to construct an improved collaborative filtering model BMF, which not only solves the phenomenon of ‘polysemy’, but also alleviates the problem of sparse scoring matrix data. Experiments show that the proposed model is effective and superior to CDL and ConvMF. The trained MSE value is 1.031, which is 9.7% lower than ConvMF.
ISSN:2444-8656
2444-8656
DOI:10.2478/amns.2020.2.00060