QCL-based frequency metrology from the mid-infrared to the THz range: a review
Quantum cascade lasers (QCLs) are becoming a key tool for plenty of applications, from the mid-infrared (mid-IR) to the THz range. Progress in related areas, such as the development of ultra-low-loss crystalline microresonators, optical frequency standards, and optical fiber networks for time and fr...
Gespeichert in:
Veröffentlicht in: | Nanophotonics (Berlin, Germany) Germany), 2019-02, Vol.8 (2), p.181-204 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum cascade lasers (QCLs) are becoming a key tool for plenty of applications, from the mid-infrared (mid-IR) to the THz range. Progress in related areas, such as the development of ultra-low-loss crystalline microresonators, optical frequency standards, and optical fiber networks for time and frequency dissemination, is paving the way for unprecedented applications in many fields. For most demanding applications, a thorough control of QCLs emission must be achieved. In the last few years, QCLs’ unique spectral features have been unveiled, while multifrequency QCLs have been demonstrated. Ultra-narrow frequency linewidths are necessary for metrological applications, ranging from cold molecules interaction and ultra-high sensitivity spectroscopy to infrared/THz metrology. A review of the present status of research in this field is presented, with a view of perspectives and future applications. |
---|---|
ISSN: | 2192-8606 2192-8614 |
DOI: | 10.1515/nanoph-2018-0076 |