Use of CMEIAS Image Analysis Software to Accurately Compute Attributes of Cell Size, Morphology, Spatial Aggregation and Color Segmentation that Signify in Situ Ecophysiological Adaptations in Microbial Biofilm Communities

In this review, we describe computational features of computer-assisted microscopy that are unique to the Center for Microbial Ecology Image Analysis System (CMEIAS) software, and examples illustrating how they can be used to gain ecophysiological insights into microbial adaptations occurring at mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computation 2015-03, Vol.3 (1), p.72-98
Hauptverfasser: Dazzo, Frank B, Niccum, Brighid C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this review, we describe computational features of computer-assisted microscopy that are unique to the Center for Microbial Ecology Image Analysis System (CMEIAS) software, and examples illustrating how they can be used to gain ecophysiological insights into microbial adaptations occurring at micrometer spatial scales directly relevant to individual cells occupying their ecological niches in situ. These features include algorithms that accurately measure (1) microbial cell length relevant to avoidance of protozoan bacteriovory; (2) microbial biovolume body mass relevant to allometric scaling and local apportionment of growth-supporting nutrient resources; (3) pattern recognition rules for morphotype classification of diverse microbial communities relevant to their enhanced fitness for success in the particular habitat; (4) spatial patterns of coaggregation that reveal the local intensity of cooperative vs. competitive adaptations in colonization behavior relevant to microbial biofilm ecology; and (5) object segmentation of complex color images to differentiate target microbes reporting successful cell-cell communication. These unique computational features contribute to the CMEIAS mission of developing accurate and freely accessible tools of image bioinformatics that strengthen microscopy-based approaches for understanding microbial ecology at single-cell resolution.
ISSN:2079-3197
2079-3197
DOI:10.3390/computation3010072