High efficiency and low roll-off green OLEDs with simple structure by utilizing thermally activated delayed fluorescence material as the universal host
We achieved high-efficiency and low-roll-off green fluorescent and phosphorescent organic light-emitting diodes (OLEDs) simultaneously by adopting the thermally activated delayed fluorescence material of bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone as the universal host. At a luminance of...
Gespeichert in:
Veröffentlicht in: | Nanophotonics (Berlin, Germany) Germany), 2017-09, Vol.6 (5), p.1133-1140 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We achieved high-efficiency and low-roll-off green fluorescent and phosphorescent organic light-emitting diodes (OLEDs) simultaneously by adopting the thermally activated delayed fluorescence material of bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone as the universal host. At a luminance of 1000 cd/m
, fluorescent OLEDs based on C545T get a current efficiency, power efficiency, and external quantum efficiency (EQE) of 31.8 cd/A, 25.0 lm/W, and 9.26%, respectively. This is almost the highest efficiency based on C545T at the luminance of 1000 cd/m
to date. On the other hand, phosphorescent OLEDs with Ir(ppy)
as the emitter realize a maximum current efficiency, power efficiency, and EQE of 64.3 cd/A, 62.4 lm/W, and 18.5%, respectively. More important, the EQE remains 17.8% at the representative luminance of 1000 cd/m
and the roll-off ratio is just 3.78%. The transient photoluminescence decay measurement demonstrates that the up-conversion of host triplet excitons plays a key role in the high efficiency and low roll-off. More detailed discussions are also given. |
---|---|
ISSN: | 2192-8614 2192-8606 2192-8614 |
DOI: | 10.1515/nanoph-2016-0177 |