Analytic Hierarchy Process & Multi Attribute Utility Theory Based Approach for the Selection of Lighting Systems in Residential Buildings: A Case Study
This paper presents an approach developed for selecting lighting systems in residential buildings using an Analytic Hierarchy Process (AHP) and the Multi Criteria Decision Making Technique (MCDMT). The developed approach considers four selection criteria of lighting systems: life-cycle cost, illumin...
Gespeichert in:
Veröffentlicht in: | Buildings (Basel) 2018-06, Vol.8 (6), p.73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an approach developed for selecting lighting systems in residential buildings using an Analytic Hierarchy Process (AHP) and the Multi Criteria Decision Making Technique (MCDMT). The developed approach considers four selection criteria of lighting systems: life-cycle cost, illumination, environmental performance, and life-span. The criteria of selection, along with the most widely used lighting systems in residential buildings, were determined through questionnaire surveys with suppliers, maintenance managers, and lighting experts. The Analytic Hierarchy Process and Multi Attribute Utility Theory were utilized to assess the significant influence of the identified main and sub-criteria on the selection process, from the design point of view. The developed approach was tested on a real case project in selecting the lighting system for aresidential building in Saudi Arabia. The obtained results show that the life-cycle cost and illumination proprieties, followed by the service life were found to be the most influential measures in the selection process. The results also show that Light-Emitting Diode(LED) lighting systems prove to bear the highest initial cost while sustaining the best overall performance. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings8060073 |