Skin Temperature: The Impact of Perfusion, Epidermis Thickness, and Skin Wetness
This work aimed to elucidate the primary factors which affect skin temperature. A simple thermophysical model of the skin, which accounts for radiative, convective, and evaporative heat losses, has been developed to address it. The model is based on the skin’s morphology and consists of passive (non...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-07, Vol.12 (14), p.7106 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work aimed to elucidate the primary factors which affect skin temperature. A simple thermophysical model of the skin, which accounts for radiative, convective, and evaporative heat losses, has been developed to address it. The model is based on the skin’s morphology and consists of passive (nonviable tissue) and active (viable tissue) layers. The bioheat equation was solved for these layers using realistic assumptions. It was found that other than the ambient temperature, blood perfusion and epidermis thickness are the primary factors responsible for the skin temperature variations. The main temperature drop in the skin is attributed to the cooling of the blood in the venous plexus. The temperature drop in the epidermis is on the scale of 0.1 °C for the normal epidermis but can be 1.5–2 °C or higher in calluses. Thus, local skin temperature variations can indicate the epidermis thickness variations, particularly in callus-prone areas. The effects of relative air humidity and skin wetness on skin temperature were also quantified. The presence of free moisture on the skin (e.g., wet wound) significantly increases the heat transfer, resulting in a skin temperature drop, which can be on the scale of several degrees Celsius. The relative air humidity significantly contributes (by slowing heat dissipation) only in the case of evaporative heat loss from wet skin. Therefore, wet skin is undesirable and should be avoided during a thermographic assessment. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12147106 |