UAV photogrammetry in the post-earthquake scenario: case studies in L'Aquila

The main advantage of using the Unmanned Aerial Vehicle (UAV) photogrammetry in a post-earthquake scenario is the ability to completely document the state of the structures and infrastructures, damaged by the earthquake, ensuring the safety of all operators during the data acquisition activities. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomatics, natural hazards and risk natural hazards and risk, 2017-01, Vol.8 (1), p.87-103
Hauptverfasser: Dominici, Donatella, Alicandro, Maria, Massimi, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main advantage of using the Unmanned Aerial Vehicle (UAV) photogrammetry in a post-earthquake scenario is the ability to completely document the state of the structures and infrastructures, damaged by the earthquake, ensuring the safety of all operators during the data acquisition activities. The safety and accessibility aspect in the area is of crucial concern after an earthquake and sometimes many areas may be inaccessible, but, at the same time, it is necessary to collect data in order to monitor and evaluate the damage. The development of new algorithms in the field of Computer Vision drastically improved the degree of automation of the 3D point clouds generation using the photogrammetry techniques. In addition, data acquisition techniques using the UAV allow a complete 3D model with the highest possible resolution especially with respect to the conventional satellite or aerial photogrammetry to be produced. These advantages make the UAV photogrammetry highly suitable for surveys in a geo-hazard context as in a post-earthquake scenario. Some results from surveys carried out with the UAV photogrammetry after L'Aquila Earthquake occurred in 2009 will be presented and discussed.
ISSN:1947-5705
1947-5713
DOI:10.1080/19475705.2016.1176605